点云特征点匹配

本文介绍了如何在点云数据中,利用特征描述子如PFH、FPFH等进行匹配,通过欧式距离或汉明距离计算相似度,并借助暴力匹配方法找到初始配对点集,同时讨论了Matlab实现中的pcmatchfeatures函数原理和过滤错误匹配的策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言:对两片点云描述子进行特征描述以后,如何匹配得到初始点集?

注意关键点提取不是描述子,描述子最终结果都是向量。
关键点常用算法:ISS关键点提取、NARF关键点提取、SIFT关键点提取、Harris关键点提取等
点云描述子算法:PFH、FPFH等。

一.原理

特征的匹配是针对特征描述子进行的,上面提到特征描述子通常是一个向量,两个特征描述子的之间的距离可以反应出其相似的程度,也就是这两个特征点是不是同一个。

根据描述子的不同,可以选择不同的距离度量。如果是浮点类型的描述子,可以使用其欧式距离;对于二进制的描述子(BRIEF)可以使用其汉明距离(两个不同二进制之间的汉明距离指的是两个二进制串不同位的个数)。

有了计算描述子相似度的方法,那么在特征点的集合中如何寻找和其最相似的特征点,这就是特征点的匹配了。最简单直观的方法就是上面使用的:暴力匹配方法(Brute-Froce Matcher),计算某一个特征点描述子与其他所有特征点描述子之间的距离,然后将得到的距离进行排序,取距离最近的一个作为匹配点。这种方法简单粗暴,其结果也是显而易见的,通过上面的匹配结果,也可以看出有大量的错误匹配,这就需要使用一些机制来过滤掉错误的匹配。

二.matlab实现

在matlab中封装好了现成的实现函数pcmatchfeatures,但是不知道原理是什么,具体实现看这里2

### 点云特征匹配算法及其实现 #### 1. 特征提取 点云特征匹配的第一步是从点云中提取具有代表性的特征。常见的特征包括几何特性(如法线方向、曲率)、局部描述符(如FPFH、SHOT)。这些特征能够反映点云的局部结构信息,从而提高后续匹配的准确性。 例如,在PCL库中,可以通过`pcl::PointCloud`类和相关模块完成特征提取[^2]。以下是基于FPFH(Fast Point Feature Histograms)的特征提取代码示例: ```cpp #include <pcl/features/fpfh_estimation.h> // 假设已有的点云数据 cloud 和 法线 normal_cloud 已经加载完毕 pcl::search::KdTree<pcl::PointXYZ>::Ptr tree(new pcl::search::KdTree<pcl::PointXYZ>()); pcl::PointCloud<pcl::FPFHSignature33>::Ptr fpfhs(new pcl::PointCloud<pcl::FPFHSignature33>()); pcl::FPFHEstimation<pcl::PointXYZ, pcl::Normal, pcl::FPFHSignature33> estimation; estimation.setInputCloud(cloud); estimation.setInputNormals(normal_cloud); estimation.setSearchMethod(tree); estimation.setRadiusSearch(0.05); // 设置搜索半径 estimation.compute(*fpfhs); std::cout << "Feature size: " << fpfhs->size() << std::endl; ``` #### 2. 对应点搜索 在获取了模板点云和目标点云特征之后,下一步是对齐它们的关键步骤之一是找到对应的点对。这通常通过最近邻搜索实现,比如使用FLANN库加速查找过程。 下面是一个简单的对应点搜索例子,假设我们已经得到了两个点云的FPFH特征 `source_fpfhs` 和 `target_fpfhs`: ```cpp #include <pcl/kdtree/kdtree_flann.h> #include <vector> pcl::KdTreeFLANN<pcl::FPFHSignature33> kdtree; kdtree.setInputCloud(target_fpfhs); std::vector<int> indices(source_fpfhs->size()); std::vector<float> sqr_distances(source_fpfhs->size()); for (size_t i = 0; i < source_fpfhs->size(); ++i) { const auto& query = (*source_fpfhs)[i]; int found = kdtree.nearestKSearch(query, 1, indices[i], sqr_distances[i]); } ``` #### 3. 变换估计 一旦找到了候选的对应关系,就可以进一步估算源点云到目标点云的空间变换矩阵 \(T\) (包含旋转和平移分量)。这一阶段常用的技术有SVD分解或者奇异值分解来解决最小二乘问题。 对于更复杂的场景下,可以采用鲁棒性更强的方法如NICP(Normal Iterative Closest Point),它综合考虑了几何位置差异以及法向量一致性约束条件下的最优解路径规划[^3]。 #### 4. 匹配评估与优化 最后一步涉及验证所得到的结果是否合理,并可能重复执行前面几个环节直到满足收敛标准为止。评价指标一般选取均方根误差(RMS Error)或者其他相似度测度来进行定量分析。 --- ### 总结 综上所述,完整的点云特征匹配流程涵盖了从原始数据准备到最后的姿态调整等多个方面的工作内容。每一步都至关重要,直接影响最终效果的好坏程度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值