Linux环境下 GPU版本 jax jaxlib flax安装

1. CUDA安装判断

CUDA版本查看: cuda 符号链接指向 cuda-11.3,确认版本号为11.3

1.
nvcc --version
# nvcc: NVIDIA (R) Cuda compiler driver
# Copyright (c) 2005-2021 NVIDIA Corporation
# Built on Sun_Mar_21_19:15:46_PDT_2021
# Cuda compilation tools, release 11.3, V11.3.58
# Build cuda_11.3.r11.3/compiler.29745058_0

2.
ls -l /usr/local | grep cuda
# cuda -> cuda-11.3
# cuda-11.3

2. CUDnn安装

2.1 检查CUDnn是否安装

正常输出则已安装:确认CUDnn版本为8.6.0

1.检查 cuDNN 头文件
ls /usr/local/cuda/include | grep cudnn.h
# cudnn.h

2. 检查 cuDNN 库文件
ls /usr/local/cuda/lib64 | grep libcudnn

libcudnn_adv_infer.so
libcudnn_adv_infer.so.8
libcudnn_adv_infer.so.8.6.0
libcudnn_adv_infer_static.a
libcudnn_adv_infer_static_v8.a
libcudnn_adv_train.so
libcudnn_adv_train.so.8
libcudnn_adv_train.so.8.6.0
libcudnn_adv_train_static.a
libcudnn_adv_train_static_v8.a
libcudnn_cnn_infer.so
libcudnn_cnn_infer.so.8
libcudnn_cnn_infer.so.8.6.0
libcudnn_cnn_infer_static.a
libcudnn_cnn_infer_static_v8.a
libcudnn_cnn_train.so
libcudnn_cnn_train.so.8
libcudnn_cnn_train.so.8.6.0
libcudnn_cnn_train_static.a
libcudnn_cnn_train_static_v8.a
libcudnn_ops_infer.so
libcudnn_ops_infer.so.8
libcudnn_ops_infer.so.8.6.0
libcudnn_ops_infer_static.a
libcudnn_ops_infer_static_v8.a
libcudnn_ops_train.so
libcudnn_ops_train.so.8
libcudnn_ops_train.so.8.6.0
libcudnn_ops_train_static.a
libcudnn_ops_train_static_v8.a
libcudnn.so
libcudnn.so.8
libcudnn.so.8.6.0

### 如何在Python 3.8环境安装JAXJAXLib 为了确保JAX及其依赖项能够正常工作,在特定的环境下正确配置非常重要。对于Python 3.8环境而言,可以按照如下方法来安装适合该版本JAX以及对应的JAXLib。 #### 确认CUDA版本兼容性 由于JAX支持GPU加速计算,因此如果计划利用NVIDIA GPU,则需确认已安装的CUDA工具包版本与打算使用的JAX/JAXLib版本相匹配。例如,当尝试安装带有`+cuda111`标记的JAXLib时,意味着此库构建于CUDA 11.1之上,所以本地机器上也应具备相同或更高版本的CUDA驱动程序[^2]。 #### 使用pip进行安装 针对希望基于Python 3.8创建新项目的情况,推荐通过虚拟环境隔离不同项目的依赖关系。这里假设已经有一个激活状态下的Python 3.8虚拟环境。接着执行以下命令完成JAX及相关组件的安装: ```bash pip install --upgrade pip setuptools wheel pip install --upgrade "jax[cpu]" # 如果不需要GPU支持的话可以选择这个CPU-only版本 # 或者如果你确实有合适的CUDA环境则继续下面这一步骤而不是上面那个 pip install --upgrade jax==0.2.3 jaxlib==0.1.69+cuda111 -f https://storage.googleapis.com/jax-releases/jax_releases.html ``` 上述指令会从Google维护的一个特殊索引页面下载预编译好的二进制文件,从而简化了整个过程并提高了成功率[^1]。 另外值得注意的是,某些情况下可能还需要额外安装其他必要的系统级软件包,比如BLAS/LAPACK实现等;具体取决于个人的操作系统平台及所选路径(如是否启用TPU支持)。通常这些前置条件可以在官方文档中找到详细的指导说明[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值