python实现K-means图像聚类

1.K-means 聚类算法简介

K-means 聚类是一种常用的无监督学习算法,用于将数据点划分为K个簇(Clusters),每个簇代表数据中的一组相似点。该算法通过最小化簇内点到簇中心(Centroid)的平方距离来实现聚类。K-means 特别适合图像分类,因为它能够将图像的像素分割成不同的区域或颜色簇。

K均值聚类(K-Means Clustering)是一种广泛应用的无监督学习算法,主要用于数据的聚类分析。它通过将数据点划分为K个簇,使得同一簇内的数据点尽可能相似,而不同簇之间的数据点尽可能不同。本文将详细介绍K均值聚类的基本原理、算法步骤、优缺点、应用场景以及一些改进方法。

一、K均值聚类的基本原理

K均值聚类的核心思想是最小化簇内点到簇中心的距离。具体来说,算法通过迭代的方法,寻找数据点的最优聚类,使得每个簇的样本点与其中心的距离最小化。

1.1 簇的定义

在K均值聚类中,簇是由一组相似的数据点构成的。每个簇有一个称为“簇中心”(Centroid)的点,代表该簇的“中心”位置。簇的相似性通常通过欧几里得距离(Euclidean Distance)来度量。

1.2 目标函数

K均值算法的目标是最小化以下损失函数,即所有簇内点到各自簇中心的距离平方和:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

闲人编程

你的鼓励就是我最大的动力,谢谢

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值