目录
1.K-means 聚类算法简介
K-means 聚类是一种常用的无监督学习算法,用于将数据点划分为K个簇(Clusters),每个簇代表数据中的一组相似点。该算法通过最小化簇内点到簇中心(Centroid)的平方距离来实现聚类。K-means 特别适合图像分类,因为它能够将图像的像素分割成不同的区域或颜色簇。
K均值聚类(K-Means Clustering)是一种广泛应用的无监督学习算法,主要用于数据的聚类分析。它通过将数据点划分为K个簇,使得同一簇内的数据点尽可能相似,而不同簇之间的数据点尽可能不同。本文将详细介绍K均值聚类的基本原理、算法步骤、优缺点、应用场景以及一些改进方法。
一、K均值聚类的基本原理
K均值聚类的核心思想是最小化簇内点到簇中心的距离。具体来说,算法通过迭代的方法,寻找数据点的最优聚类,使得每个簇的样本点与其中心的距离最小化。
1.1 簇的定义
在K均值聚类中,簇是由一组相似的数据点构成的。每个簇有一个称为“簇中心”(Centroid)的点,代表该簇的“中心”位置。簇的相似性通常通过欧几里得距离(Euclidean Distance)来度量。
1.2 目标函数
K均值算法的目标是最小化以下损失函数,即所有簇内点到各自簇中心的距离平方和: