时间序列预测工程化(Prophet+ARIMA电商预测)

目录

  • 时间序列预测工程化(Prophet+ARIMA电商预测)
    • 1. 引言
    • 2. 项目背景与意义
      • 2.1 电商销售预测的重要性
      • 2.2 Prophet 与 ARIMA 模型
      • 2.3 工业级数据处理与工程化需求
    • 3. 数据集生成与介绍
      • 3.1 数据集构成
      • 3.2 数据生成方法
    • 4. 时间序列预测理论基础
      • 4.1 Prophet模型原理
      • 4.2 ARIMA模型原理
      • 4.3 模型融合与比较
    • 5. 模型构建与训练
      • 5.1 Prophet模型构建
      • 5.2 ARIMA模型构建
      • 5.3 模型融合
    • 6. GPU加速与数值计算(使用Numba)
    • 7. Dash仪表盘与GUI混合实现
    • 8. 系统整体架构
    • 9. 数学公式与关键指标
    • 10. 完整代码实现
    • 10. 代码自查与BUG排查
    • 11. 总结与展望
    • 12. 结语


时间序列预测工程化(Prophet+ARIMA电商预测)

1. 引言

在电商领域,准确预测未来销售额对于库存管理、促销策略和财务规划具有极其重要的意义。时间序列预测作为一种重要的数据分析方法,能够利用历史销售数据预测未来趋势。近年来,Facebook Prophet 和 ARIMA 模型被广泛应用于时间序列预测,其中 Prophet 以其对季节性和节假日效应的良好处理而受到青睐,而 ARIMA 模型则在短期预测上表现稳定。

本项目旨在构建一个端到端的时间序列预测工程,对电商销售数据进行预测。我们将模拟生成大规模电商销售数据,并对数据进行预处理、归一化和特征构造。随后,我们分别利用 Prophet 和 ARIMA 模型构建预测系统,并对预测结果进行评估和对比。为提高数据处理和模型训练的效率,我们采用 Numba 对关键计算进行 GPU 加速;同时,通过 Dash 与 PyQt 混合实现交互式仪表盘,将数据、预测结果和关键指标以图表形式实时展示,确保系统在工业级数据环境下高效、稳定运行。

程序运行结果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

闲人编程

你的鼓励就是我最大的动力,谢谢

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值