目录
- 时间序列预测工程化(Prophet+ARIMA电商预测)
-
- 1. 引言
- 2. 项目背景与意义
-
- 2.1 电商销售预测的重要性
- 2.2 Prophet 与 ARIMA 模型
- 2.3 工业级数据处理与工程化需求
- 3. 数据集生成与介绍
-
- 3.1 数据集构成
- 3.2 数据生成方法
- 4. 时间序列预测理论基础
-
- 4.1 Prophet模型原理
- 4.2 ARIMA模型原理
- 4.3 模型融合与比较
- 5. 模型构建与训练
-
- 5.1 Prophet模型构建
- 5.2 ARIMA模型构建
- 5.3 模型融合
- 6. GPU加速与数值计算(使用Numba)
- 7. Dash仪表盘与GUI混合实现
- 8. 系统整体架构
- 9. 数学公式与关键指标
- 10. 完整代码实现
- 10. 代码自查与BUG排查
- 11. 总结与展望
- 12. 结语
时间序列预测工程化(Prophet+ARIMA电商预测)
1. 引言
在电商领域,准确预测未来销售额对于库存管理、促销策略和财务规划具有极其重要的意义。时间序列预测作为一种重要的数据分析方法,能够利用历史销售数据预测未来趋势。近年来,Facebook Prophet 和 ARIMA 模型被广泛应用于时间序列预测,其中 Prophet 以其对季节性和节假日效应的良好处理而受到青睐,而 ARIMA 模型则在短期预测上表现稳定。
本项目旨在构建一个端到端的时间序列预测工程,对电商销售数据进行预测。我们将模拟生成大规模电商销售数据,并对数据进行预处理、归一化和特征构造。随后,我们分别利用 Prophet 和 ARIMA 模型构建预测系统,并对预测结果进行评估和对比。为提高数据处理和模型训练的效率,我们采用 Numba 对关键计算进行 GPU 加速;同时,通过 Dash 与 PyQt 混合实现交互式仪表盘,将数据、预测结果和关键指标以图表形式实时展示,确保系统在工业级数据环境下高效、稳定运行。
程序运行结果: