相关文章:
- 机器学习中的数学——激活函数(一):Sigmoid函数
- 机器学习中的数学——激活函数(二):Tanh函数
- 机器学习中的数学——激活函数(三):ReLU(Rectified Linear Unit)函数
- 机器学习中的数学——激活函数(四):Leaky ReLU函数
- 机器学习中的数学——激活函数(五):ELU函数
- 机器学习中的数学——激活函数(六):Parametric ReLU(PReLU)函数
- 机器学习中的数学——激活函数(七):Swish
PReLU
1. 数学公式:
PReLU(Parametric Rectified Linear Unit)是 ReLU 的改进版本
P
ReLU
(
x
)
=
{
x
若
x
>
0
,
a
i
x
若
x
≤
0
P\!\operatorname{ReLU}(x) = \begin{cases} x & \text{若 } x > 0, \\ a_i x & \text{若 } x \leq 0 \end{cases}
PReLU(x)={xaix若 x>0,若 x≤0
- 参数说明:参数
α
\alpha
α通常为0到1之间的数字,并且通常相对较小
- 如果 α i \alpha_i αi=0,退化为标准 ReLU。
- 如果 α i \alpha_i αi>0,为固定小值(如 0.01)时,退化为 LeakyReLU
- 如果 α i \alpha_i αi是可学习的参数,则PReLU(x)为PReLU函数
2. 特点:
- 在负值域,PReLU的斜率较小,这也可以避免Dead ReLU问题。
- 与ELU相比,PReLU 在负值域是线性运算。尽管斜率很小,但不会趋于0。