基于YOLOv8深度学习的智能玉米害虫检测识别系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战

文章介绍了作者使用YOLOv8深度学习框架开发的智能玉米害虫检测系统,通过大量图片训练模型,实现13种害虫的识别,支持图片、视频和摄像头检测,提供完整代码和教程供读者学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发2.【车牌识别与自动收费管理系统开发
3.【手势识别系统开发4.【人脸面部活体检测系统开发
5.【图片风格快速迁移软件开发6.【人脸表表情识别系统
7.【YOLOv8多目标识别与自动标注软件开发8.【基于YOLOv8深度学习的行人跌倒检测系统
9.【基于YOLOv8深度学习的PCB板缺陷检测系统10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统
11.【基于YOLOv8深度学习的安全帽目标检测系统12.【基于YOLOv8深度学习的120种犬类检测与识别系统
13.【基于YOLOv8深度学习的路面坑洞检测系统14.【基于YOLOv8深度学习的火焰烟雾检测系统
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统16.【基于YOLOv8深度学习的舰船目标分类检测系统
17.【基于YOLOv8深度学习的西红柿成熟度检测系统18.【基于YOLOv8深度学习的血细胞检测与计数系统
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统20.【基于YOLOv8深度学习的水稻害虫检测与识别系统
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统22.【基于YOLOv8深度学习的路面标志线检测与识别系统
22.【基于YOLOv8深度学习的智能小麦害虫检测识别系统

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】

《------正文------》

基本功能演示

在这里插入图片描述

摘要:玉米是全球重要的粮食作物之一,玉米害虫的侵害会严重影响玉米产量和品质,导致农民经济损失。因此,玉米害虫的及时检测与识别显得至关重要。本文基于YOLOv8深度学习框架,通过4538张图片,训练了一个进行智能玉米害虫检测识别的目标检测模型。并基于此模型开发了一款带UI界面的智能玉米害虫检测识别系统,可用于实时检测场景中的13种玉米害虫类别,更方便进行功能的展示。该系统是基于pythonPyQT5开发的,支持图片视频以及摄像头进行目标检测,并保存检测结果。本文提供了完整的Python代码和使用教程,给感兴趣的小伙伴参考学习,完整的代码资源文件获取方式见文末

点击跳转至文末《完整相关文件及源码》获取


前言

玉米是全球重要的粮食作物之一,玉米害虫的侵害会严重影响玉米产量和品质,导致农民经济损失。因此,玉米害虫的及时检测与识别显得至关重要。精确的害虫识别能够帮助农业工作者快速确定害虫种类,并采取针对性的防治措施,有效减少化学农药的滥用,降低对生态环境的负面影响,同时增加农作物产量,提高农业生产的经济效益。

智能玉米害虫检测与识别系统有着广泛的应用场景。
首先,它可以应用于农田管理中,通过将系统集成到无人机或田间自动化设备中,进行大规模的作物健康监测,实时反馈害虫活动情况,提升害虫防控的效率和精度。
其次,在现代化精准农业中,该系统能够与智能农业平台相结合,为农户提供数据分析和决策支持,实现科学种植和可持续发展。
此外,研究机构可以利用此系统收集和分析害虫发生的模式和趋势,对农业害虫生态学进行深入研究,为制定害虫综合管理策略提供科学依据。
总之,智能玉米害虫检测与识别系统是现代农业技术发展的重要组成部分,对保障粮食安全、推动农业现代化和生态环保均具有重要意义。

博主通过搜集不同种类的玉米害虫的相关数据图片,根据YOLOv8的目标检测技术,基于python与Pyqt5开发了一款界面简洁的智能玉米害虫检测识别系统,可支持图片、视频以及摄像头检测,同时可以将图片或者视频检测结果进行保存

软件初始界面如下图所示:
在这里插入图片描述

检测结果界面如下:
在这里插入图片描述

一、软件核心功能介绍及效果演示

软件主要功能

1. 可进行13种玉米害虫的检测与识别,分别为: ['幼虫', '鼹鸣虫', '电线虫', '玉斑螟', '黑夜蛾', '大夜蛾', '黄地老虎', '红蜘蛛', '玉米螟', '黄曲条夜蛾', '蚜虫', '白星花金龟', '桃小食心虫'];
2. 支持图片、视频及摄像头进行检测,同时支持图片的批量检测
3. 界面可实时显示目标位置目标总数置信度用时等信息;
4. 支持图片或者视频检测结果保存

(1)图片检测演示

点击图片图标,选择需要检测的图片,或者点击文件夹图标,选择需要批量检测图片所在的文件夹,操作演示如下:
点击目标下拉框后,可以选定指定目标的结果信息进行显示。 点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
注:1.右侧目标位置默认显示置信度最大一个目标位置。所有检测结果均在左下方表格中显示。
单个图片检测操作如下:
在这里插入图片描述

批量图片检测操作如下:
在这里插入图片描述

(2)视频检测演示

点击视频图标,打开选择需要检测的视频,就会自动显示检测结果。点击保存按钮,会对视频检测结果进行保存,存储路径为:save_data目录下。
在这里插入图片描述

(3)摄像头检测演示

点击摄像头图标,可以打开摄像头,可以实时进行检测,再次点击摄像头图标,可关闭摄像头。
在这里插入图片描述

(4)保存图片与视频检测结果

点击保存按钮后,会将当前选择的图片【含批量图片】或者视频的检测结果进行保存。检测的图片与视频结果会存储在save_data目录下。
在这里插入图片描述
在这里插入图片描述

二、模型的训练、评估与推理

1.YOLOv8的基本原理

YOLOv8是一种前沿的目标检测技术,它基于先前YOLO版本在目标检测任务上的成功,进一步提升了性能和灵活性。主要的创新点包括一个新的骨干网络、一个新的 Ancher-Free 检测头和一个新的损失函数,可以在从 CPU 到 GPU 的各种硬件平台上运行
其主要网络结构如下:
在这里插入图片描述

2. 数据集准备与训练

通过网络上搜集关于不同玉米害虫的各类图片,并使用LabelMe标注工具对每张图片中的目标边框(Bounding Box)及类别进行标注。一共包含4538张图片,其中训练集包含3857张图片验证集包含681张图片,部分图像及标注如下图所示。
在这里插入图片描述

在这里插入图片描述

图片数据的存放格式如下,在项目目录中新建datasets目录,同时将检测的图片分为训练集与验证集放入CornInsectData目录下。
在这里插入图片描述

同时我们需要新建一个data.yaml文件,用于存储训练数据的路径及模型需要进行检测的类别。YOLOv8在进行模型训练时,会读取该文件的信息,用于进行模型的训练与验证。data.yaml的具体内容如下:

train: E:\MyCVProgram\CornInsectDetection\datasets\CornInsectData\train
val: E:\MyCVProgram\CornInsectDetection\datasets\CornInsectData\val

nc: 13
names: ['grub', 'mole cricket', 'wireworm', 'white margined moth', 'black cutworm', 'large cutworm', 'yellow cutworm', 'red spider', 'corn borer', 'army worm', 'aphids', 'Potosiabre vitarsis', 'peach borer']

注:train与val后面表示需要训练图片的路径,建议直接写自己文件的绝对路径。
数据准备完成后,通过调用train.py文件进行模型训练,epochs参数用于调整训练的轮数,batch参数用于调整训练的批次大小【根据内存大小调整,最小为1】,代码如下:

# 加载模型
model = YOLO("yolov8n.pt")  # 加载预训练模型
# Use the model
if __name__ == '__main__':
    # Use the model
    results = model.train(data='datasets/CornInsectData/data.yaml', epochs=250, batch=4)  # 训练模型
    # 将模型转为onnx格式
    # success = model.export(format='onnx')

3. 训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv8在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述

各损失函数作用说明:
定位损失box_loss:预测框与标定框之间的误差(GIoU),越小定位得越准;
分类损失cls_loss:计算锚框与对应的标定分类是否正确,越小分类得越准;
动态特征损失(dfl_loss):DFLLoss是一种用于回归预测框与目标框之间距离的损失函数。在计算损失时,目标框需要缩放到特征图尺度,即除以相应的stride,并与预测的边界框计算Ciou Loss,同时与预测的anchors中心点到各边的距离计算回归DFLLoss。这个过程是YOLOv8训练流程中的一部分,通过计算DFLLoss可以更准确地调整预测框的位置,提高目标检测的准确性。
本文训练结果如下:
在这里插入图片描述

我们通常用PR曲线来体现精确率和召回率的关系,本文训练结果的PR曲线如下。mAP表示Precision和Recall作为两轴作图后围成的面积,m表示平均,@后面的数表示判定iou为正负样本的阈值。mAP@.5:表示阈值大于0.5的平均mAP,可以看到本文模型两类目标检测的mAP@0.5平均值为0.772,结果还是很不错的,由于有些类别害虫样本较少,精度较差,影响了部分整体精度,有待进一步提升。
在这里插入图片描述

4. 检测结果识别

模型训练完成后,我们可以得到一个最佳的训练结果模型best.pt文件,在runs/trian/weights目录下。我们可以使用该文件进行后续的推理检测。
图片检测代码如下:

# 所需加载的模型目录
path = 'models/best.pt'
# 需要检测的图片地址
img_path = "TestFiles/IP015000068.jpg"

# 加载预训练模型
# conf	0.25	object confidence threshold for detection
# iou	0.7	intersection over union (IoU) threshold for NMS
model = YOLO(path, task='detect')
# model = YOLO(path, task='detect',conf=0.5)


# 检测图片
results = model(img_path)
res = results[0].plot()
cv2.imshow("YOLOv8 Detection", res)
cv2.waitKey(0)

执行上述代码后,会将执行的结果直接标注在图片上,结果如下:
在这里插入图片描述

以上便是关于此款智能玉米害虫检测识别系统的原理与代码介绍。基于此模型,博主用pythonPyqt5开发了一个带界面的软件系统,即文中第二部分的演示内容,能够很好的支持图片、视频及摄像头进行检测,同时支持检测结果的保存

关于该系统涉及到的完整源码、UI界面代码、数据集、训练代码、测试图片视频等相关文件,均已打包上传,感兴趣的小伙伴可以通过下载链接自行获取。


【获取方式】

关注下方名片G-Z-H:【阿旭算法与机器学习】,回复【软件】即可获取下载方式

本文涉及到的完整全部程序文件:包括python源码、数据集、训练代码、UI文件、测试图片视频等(见下图),获取方式见文末:
在这里插入图片描述

注意:该代码基于Python3.9开发,运行界面的主程序为MainProgram.py,其他测试脚本说明见上图。为确保程序顺利运行,请按照程序运行说明文档txt配置软件运行所需环境。

关注下方名片GZH:【阿旭算法与机器学习】,回复【软件】即可获取下载方式


结束语

以上便是博主开发的基于YOLOv8深度学习的智能玉米害虫检测识别系统的全部内容,由于博主能力有限,难免有疏漏之处,希望小伙伴能批评指正。
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

<think>嗯,用户想找一个基于YOLOv8的生活垃圾分类目标检测系统的完整实现,包括Python源码PyQt5界面数据集训练代码。首先,我需要回忆一下YOLOv8的相关知识,以及它在目标检测中的应用。YOLOv8是Ultralytics发布的,应该是YOLO系列的最新版本,性能不错,适合实时检测任务。 用户提到的几个引用都是关于不同应用的YOLOv8系统,比如安全帽检测、PCB板缺陷检测,这些项目都有源码界面数据集训练代码。这说明用户可能希望有一个类似的结构,但针对垃圾分类。所以,我需要从系统结构、数据集准备、模型训练界面开发这几个方面来组织回答。 首先,系统结构方面,通常分为数据准备、模型训练界面开发、系统集成。需要确保每个部分都有对应的资源。比如数据集的来源,可能用户需要公开的垃圾分类数据集,或者自己标注。可能需要推荐一些现有的数据集,比如Hugging Face上的TrashBox或者TACO,或者建议用户自己收集标注。 然后是模型训练部分,YOLOv8代码通常基于Ultralytics的库,所以需要安装相应的依赖,比如torch、ultralytics、opencv等。训练代码的示例可能需要给出,比如如何加载数据集,设置参数,进行训练。这部分可以引用之前类似项目的结构,比如引用中的安全帽检测系统,准确率0.95,说明训练方法是可行的。 接下来是PyQt5界面开发,这部分需要设计界面元素,比如图片/视频上传按钮,检测结果显示区域,结果统计等。需要调用训练好的模型进行推理,并将结果可视化。可能需要用到OpenCV处理图像,PyQt5的组件布局,比如QMainWindow、QLabel、QPushButton等。还要处理视频和摄像头的实时检测,可能需要多线程来处理,避免界面卡顿。 数据集方面,用户可能需要具体的下载链接或者处理方法,比如数据增强、标注格式(YOLO格式的txt文件)。数据预处理步骤,比如划分训练集、验证集、测试集,可能需要给出代码示例,如使用splitfolders库。 训练代码部分,需要详细说明如何配置YOLOv8模型,设置epochs、batch size等参数,以及如何保存最佳模型。可能需要提到早停法、学习率调整等优化策略,以提高模型准确率。这部分可以参考引用中的安全帽检测项目,准确率高达0.95,说明类似的训练方法有效。 系统集成部分,需要将训练好的模型嵌入到PyQt5界面中,处理用户输入(图片、视频、摄像头),运行推理,并展示结果。同时,结果保存功能也很重要,比如保存检测后的图片或视频,可能需要使用OpenCV的VideoWriter。 在相关问题部分,需要生成用户可能进一步提出的问题,比如如何优化模型、部署到移动端、处理实时视频中的性能问题,或者数据增强的方法。这些问题应该与项目实际开发中可能遇到的挑战相关。 最后,要确保回答符合用户的要求,结构清晰,分步骤说明,并且引用相关的参考资料,比如提到的三个引用中的内容,尤其是引用1中的垃圾分类检测系统,可能直接相关,需要突出这一点。同时,注意使用正确的LaTeX格式,但用户的问题中没有数学公式,可能不需要太多数学内容,但需遵循系统指令中的格式要求。 需要检查是否有遗漏的部分,比如数据集的标注工具推荐(如LabelImg),或者模型评估指标(如mAP),或者环境配置的注意事项(如CUDA版本)。另外,可能需要提醒用户注意数据集的平衡性,不同类别的样本数量是否均衡,以避免模型偏向某些类别。 总结来说,回答需要涵盖系统结构、数据集准备、模型训练界面开发、系统集成,并提供相关代码示例和资源链接,同时引用已有的类似项目作为参考,确保用户能够按照步骤实现整个系统。</think>基于YOLOv8的生活垃圾分类目标检测系统开发可分为以下核心步骤,结合现有项目结构和深度学习技术实现: ### 一、系统架构设计 系统包含四大模块: 1. **数据集模块**:包含标注好的垃圾分类图像及YOLO格式标签 2. **模型训练模块**:基于YOLOv8构建目标检测网络 3. **PyQt5界面模块**:实现可视化交互界面 4. **检测推理模块**:集成训练模型实现实时检测[^1] ### 二、数据集准备 推荐使用公开垃圾分类数据集: - **TrashBox数据集**(Hugging Face平台) - **TACO数据集**(包含60类垃圾) - 自建数据集需满足: ```python # 数据集目录结构 dataset/ ├── images/ │ ├── train/ │ └── val/ └── labels/ ├── train/ └── val/ ``` 标注工具推荐使用LabelImg,生成YOLO格式的txt标注文件 ### 三、模型训练实现 ```python from ultralytics import YOLO # 加载预训练模型 model = YOLO('yolov8n.pt') # 训练配置 results = model.train( data='trash.yaml', epochs=100, batch=16, imgsz=640, device='0', name='yolov8_trash_det' ) ``` 需创建`trash.yaml`定义数据集路径和类别信息: ```yaml path: ./dataset train: images/train val: images/val names: 0: plastic 1: paper 2: metal 3: glass ``` ### 四、PyQt5界面开发 核心界面组件: ```python class MainWindow(QMainWindow): def __init__(self): super().__init__() # 界面布局 self.image_label = QLabel(self) self.result_table = QTableWidget() self.cam_btn = QPushButton("开启摄像头") # 模型加载 self.model = YOLO('best.pt') def detect_image(self, img_path): results = self.model(img_path) self.show_results(results[0]) ``` ### 五、系统集成关键代码 ```python def video_detection(self): cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() results = self.model.track(frame, persist=True) annotated_frame = results[0].plot() cv2.imshow('Detection', annotated_frame) ``` ### 六、项目资源获取 完整代码包应包含: - 训练好的权重文件(`best.pt`) - PyQt5界面源码(`main_window.py`) - 示例数据集(建议2000+图像) - 环境依赖文件(`requirements.txt`)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿_旭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值