自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Limiiiing的博客

带你轻松学会YOLO。Learn YOLO easily, use YOLO effortlessly!

  • 博客(991)
  • 资源 (14)
  • 问答 (1)
  • 收藏
  • 关注

原创 《多模态融合改进》目录一览 | 专栏介绍 ,多模态的全方位改进,提供多模态模型改进完整项目包-开箱即用

在大家订阅专栏后,便可获得多模态模型改进完整项目包-开箱即用,方便简单

2025-04-15 13:31:46 2086 4

原创 YOLOv12改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

1️⃣ 什么!不知道如何改进模型⁉️ 本专栏所使用并改进的每一个模块均包含详细的模块分析、原理讲解、个人总结、多种改进方式以及完整的修改流程,所有改进100%可直接运行,性价比极高。2️⃣ 找不到合适的模块⁉️ 所有改进点均为近三年顶会,顶刊提出的先进算法,将其融入到中,并进行二次创新,新颖度高,创新度高,能够适应不同的任务场景。3️⃣ 不确定自己改进的步骤、结果是否正确⁉️ 订阅专栏即可进群享受模型训练、模型改进、论文写作、投稿选刊,从入门到论文的各种答疑内容,非常适合新手。4️⃣ 团队内发表数篇SCI论

2025-03-10 22:00:24 6132 12

原创 YOLO训练/写作脚本目录一览 | 涉及标签格式转换、数据扩充、热力图、感受野、精度曲线、数量统计等近百个脚本文件

在大家购买专栏后,便可获得全部的脚本文件。在获取到文件后,只需按照将程序放在个人项目中即可一键运行。

2024-12-30 16:02:54 1848 2

原创 YOLOv8改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

1️⃣本专栏已更新150多种不同的改进方法,所使用并改进的每一个模块均包含详细的模块分析、原理讲解、个人总结、多种改进方式以及完整的修改流程,所有改进100%可直接运行。2️⃣所有改进点均为近三年顶会,顶刊提出的先进算法,将其融入到中,紧跟学术热点,适应不同的任务场景。3️⃣团队内发表数篇SCI论文,熟悉完整的发表流程,订阅专栏即可进群享受模型训练、模型改进、论文写作、投稿选刊,从入门到论文的各种答疑内容。4️⃣专栏内容会持续更新,最近更新时间:2024-12-24。项目介绍在大家购买专栏后,加入学

2024-12-24 13:26:10 5312 3

原创 RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

1️⃣本专栏已更新150多种不同的改进方法,所使用并改进的每一个模块均包含详细的模块分析、原理讲解、个人总结、多种改进方式以及完整的修改流程,所有改进100%可直接运行。2️⃣所有改进点均为近三年顶会,顶刊提出的先进算法,将其融入到中,紧跟学术热点,适应不同的任务场景。3️⃣团队内发表数篇SCI论文,熟悉完整的发表流程,订阅专栏即可进群享受模型训练、模型改进、论文写作、投稿选刊,从入门到论文的各种答疑内容。4️⃣专栏内容会持续更新,最近更新时间:2024-12-4。项目介绍在大家购买专栏后,加入学习

2024-12-03 20:39:23 9399 2

原创 YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

如今各种网络模型更新迭代越来越快,计算机视觉相关的文章也越来越多,多到一些普通,通用的改进点无法达到发表的要求。本专栏正是解决这个问题!如何寻找创新点?为什么要使用这个模块?如何才能提升模型的精度?这是贯穿我们研究始终的问题。创新点在这个专栏中我已经整理好了,这已经省去了大部分时间,但是当我们使用这些新的模块去优化已有的模型,如何才能提升模型的精度,才是我们要达到的最终目标。当然我们可以使用传统的A+B+C的方法去堆积模块,然后是进行大量的实验去排列组合以实现最终的精度提升,这无可厚非。

2024-10-11 15:10:44 22930 126

原创 YOLOv10改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

如何寻找创新点?为什么要使用这个模块?如何才能提升模型的精度?这是贯穿我们研究始终的问题。创新点在这个专栏中我已经整理好了,这已经省去了大部分时间,但是当我们使用这些新的模块去优化已有的模型,如何才能提升模型的精度,才是我们要达到的最终目标。当然我们可以使用传统的A+B+C的方法去堆积模块,然后是进行大量的实验去排列组合以实现最终的精度提升,这无可厚非。

2024-10-11 12:33:51 6612 3

原创 YOLOv9改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

如何寻找创新点?为什么要使用这个模块?如何才能提升模型的精度?这是贯穿我们研究始终的问题。创新点在这个专栏中我已经整理好了,这已经省去了大部分时间,但是当我们使用这些新的模块去优化已有的模型,如何才能提升模型的精度,才是我们要达到的最终目标。当然我们可以使用传统的A+B+C的方法去堆积模块,然后是进行大量的实验去排列组合以实现最终的精度提升,这无可厚非。

2024-09-20 15:24:43 3215

原创 【RT-DETR单模态融合改进】普通数据集的双模型融合改进,涉及中期、中后期、后期融合方式的完整配置步骤以及二次改进方案

在网络中间层(骨干网络与颈部网络之间)对多模态特征进行融合。

2025-06-02 11:00:00 12

原创 YOLOv8改进策略【Conv和Transformer】| IJCAI 2024 利用FreqFormer中的SFA 空间 - 频率注意力和CTA 通道转置注意力 二次改进C2f

在FreqFormer模型中,SFA(Spatial-Frequency Attention)和CTA(Channel Transposed Attention)模块是关键组成部分,它们针对传统Transformer在图像超分辨率任务中的不足而设计,旨在更好地恢复高频细节,提升模型性能。

2025-06-02 10:00:00 1

原创 【RT-DETR多模态融合改进】在前期、中期、中后期、后期多模态融合中添加P6大目标检测层,完整步骤及代码

主题: RT-DETR的多模态融合改进中增加P6大目标检测层方式: 分别在前期融合、中期融合、中-后期融合、后期融合中增加P6多模态融合检测层。内容: 包含融合方式详解以及完整配置步骤,开箱即用,一键运行。原始模型结构如下:二、有效特征层对应的检测头类别2.1 P3/8 - small检测头原始模型中的对应的检测头主要用于检测相对较小的目标。其特征图大小相对较大,空间分辨率较高。适合检测尺寸大概在到像素左右的目标。2.2 P4/16 - medium检测头这个检测头对应的经过了更多的下采样

2025-06-01 11:00:00 26

原创 【RT-DETR多模态融合改进】在前期、中期、中后期、后期多模态融合中添加P2小目标检测层,完整步骤及代码

主题: RT-DETR的多模态融合改进中增加P2小目标检测层方式: 分别在前期融合、中期融合、中-后期融合、后期融合中增加P2多模态融合检测层。内容: 包含融合方式详解以及完整配置步骤,开箱即用,一键运行。原始模型结构如下:二、有效特征层对应的检测头类别2.1 P3/8 - small检测头原始模型中的对应的检测头主要用于检测相对较小的目标。其特征图大小相对较大,空间分辨率较高。适合检测尺寸大概在到像素左右的目标。2.2 P4/16 - medium检测头这个检测头对应的经过了更多的下采样

2025-06-01 10:00:00 14

原创 RT-DETR改进策略【Conv和Transformer】| IJCAI 2024 利用FreqFormer中的SFA 空间 - 频率注意力 二次改进HGBlock、ResNetLayer

本文记录的是利用 SFA 空间 - 频率注意力(Spatial-Frequency Attention)和 CTA 通道转置注意力(Channel Transposed Attention)模块优化 RT-DETR的目标检测网络模型。和源自图像超分辨率领域的模型,前者结合高频和通道信息到自注意力中,后者从通道维度进行自注意力计算,二者结合能够有效处理复杂的图像信息。本文将其应用到中,并进行,使网络能够综合空间、频率和通道等多种维度信息,更好地突出重要特征,从而提升对不同尺度目标和不规则形状目标的特征提取能力

2025-05-31 10:30:00 22

原创 YOLOv8改进策略【卷积层】| AAAI 2025 风车状卷积PConv,实现感受野的高效扩张

本文记录的是利用风车卷积改进YOLOv8的目标检测网络模型。在红外小目标检测任务中,传统卷积方式难以捕捉目标像素的空间特征,影响检测性能,因此需要更适配的卷积方式提升特征提取能力。但不同尺度的红外小目标对特征提取需求有差异,为了更好地满足这些需求,本文利用模块改进,使模型能够更精准地对齐红外小目标像素的高斯空间分布,在增强底层特征提取的同时显著扩大感受野,使网络更好地适应不同尺度红外小目标的检测需求。Pinwheel-shaped Convolution and Scale-based Dynamic Lo

2025-05-31 10:00:00 20

原创 【RT-DETR多模态融合改进】(可见光+红外)涉及前期、中期、中后期、后期融合方式的完整配置步骤以及二次改进方案(rtdetr-l版本)

在网络输入阶段将多模态数据直接合并,形成统一的特征表示。

2025-05-30 11:00:00 27

原创 【RT-DETR多模态融合改进】(可见光+红外)涉及前期、中期、中后期、后期融合方式的完整配置步骤以及二次改进方案(resnet50版本)

在网络输入阶段将多模态数据直接合并,形成统一的特征表示。

2025-05-30 10:00:00 25

原创 【RT-DETR多模态融合改进】(可见光+红外)涉及前期、中期、中后期、后期融合方式的完整配置步骤以及二次改进方案(resnet18版本)

主题: RT-DETR的多模态融合改进(resnet18版本)。方式: 前期融合、中期融合、中-后期融合、后期融合。内容: 包含融合方式详解和完整的项目包和配置步骤以及二次改进建议,开箱即用,一键运行。定义: 在网络输入阶段将多模态数据直接合并,形成统一的特征表示。实现方式: 将 RGB(3 通道)与红外(3 通道)图像直接拼接为 6 通道输入,以保留原始模态的细节信息。结构示意图:定义: 在网络中间层(骨干网络与颈部网络之间)对多模态特征进行融合。实现方式: 每个模态通过独立的骨干网络提取特征,融合时采

2025-05-29 09:41:34 492

原创 【RT-DETR多模态融合改进】在多模态项目中配置rtdetr-resnet18、rtdetr-resnet34以及超参数调整

RT-DETR是一种实时端到端的目标检测模型,主要由 骨干网络、高效混合编码器和 带有辅助预测头的 Transformer 解码器组成。本文对其进行了详细分析,并在项目中配置了结构。

2025-05-29 09:40:55 92

原创 YOLOv12改进策略【Conv和Transformer】| IJCAI 2024 利用FreqFormer中的SFA 空间 - 频率注意力和CTA 通道转置注意力 二次改进A2C2f

在FreqFormer模型中,SFA(Spatial-Frequency Attention)和CTA(Channel Transposed Attention)模块是关键组成部分,它们针对传统Transformer在图像超分辨率任务中的不足而设计,旨在更好地恢复高频细节,提升模型性能。

2025-05-28 09:36:29 167

原创 YOLOv11改进策略【Conv和Transformer】| IJCAI 2024 利用FreqFormer中的SFA 空间 - 频率注意力和CTA 通道转置注意力 二次改进C3k2

在FreqFormer模型中,SFA(Spatial-Frequency Attention)和CTA(Channel Transposed Attention)模块是关键组成部分,它们针对传统Transformer在图像超分辨率任务中的不足而设计,旨在更好地恢复高频细节,提升模型性能。

2025-05-28 09:35:51 45

原创 YOLOv10改进策略【Conv和Transformer】| IJCAI 2024 利用FreqFormer中的SFA 空间 - 频率注意力和CTA 通道转置注意力 二次改进C2fCIB

本文记录的是利用 SFA 空间 - 频率注意力(Spatial-Frequency Attention)和 CTA 通道转置注意力(Channel Transposed Attention)模块优化 YOLOv10 的目标检测网络模型。和源自图像超分辨率领域的模型,前者结合高频和通道信息到自注意力中,后者从通道维度进行自注意力计算,二者结合能够有效处理复杂的图像信息。本文将其应用到中,并进行,使网络能够综合空间、频率和通道等多种维度信息,更好地突出重要特征,从而提升对不同尺度目标和不规则形状目标的特征提取能

2025-05-27 09:39:03 125

原创 YOLOv8改进策略【Backbone/主干网络】| CVPR 2024 替换骨干为InceptionNeXt,将大核深度卷积分解为四个并行分支,平衡速度与精度

InceptionNeXt是一种新型的卷积神经网络,旨在解决大核卷积神经网络在速度和性能之间的平衡问题。它的设计出发点基于对现有模型的分析和改进需求,结构上有独特的创新,这些设计为模型带来了显著的优势。

2025-05-27 09:02:18 96

原创 【YOLOv8多模态融合改进】| 改进 双HS-FPN颈部结构:高级筛选特征融合金字塔,加强不同模态间的细微特征检测

HS - FPN结构由特征选择模块和特征融合模块组成。特征选择模块中,CA模块先处理输入特征图,经池化激活函数确定各通道权重以过滤特征图DM模块再对不同尺度特征图降维;特征融合模块中,利用SFF机制以高级特征为权重筛选低级特征语义信息后融合,提升模型检测能力。

2025-05-26 13:51:19 181

原创 YOLOv11改进策略【卷积层】| AAAI 2025 风车状卷积PConv,实现感受野的高效扩张

本文记录的是利用风车卷积改进YOLOv11的目标检测网络模型。在红外小目标检测任务中,传统卷积方式难以捕捉目标像素的空间特征,影响检测性能,因此需要更适配的卷积方式提升特征提取能力。但不同尺度的红外小目标对特征提取需求有差异,为了更好地满足这些需求,本文利用模块改进,使模型能够更精准地对齐红外小目标像素的高斯空间分布,在增强底层特征提取的同时显著扩大感受野,使网络更好地适应不同尺度红外小目标的检测需求。Pinwheel-shaped Convolution and Scale-based Dynamic L

2025-05-26 08:34:49 575

原创 YOLOv12改进策略【卷积层】| AAAI 2025 风车状卷积PConv,实现感受野的高效扩张

本文记录的是利用风车卷积改进YOLOv12的目标检测网络模型。在红外小目标检测任务中,传统卷积方式难以捕捉目标像素的空间特征,影响检测性能,因此需要更适配的卷积方式提升特征提取能力。但不同尺度的红外小目标对特征提取需求有差异,为了更好地满足这些需求,本文利用模块改进,使模型能够更精准地对齐红外小目标像素的高斯空间分布,在增强底层特征提取的同时显著扩大感受野,使网络更好地适应不同尺度红外小目标的检测需求。Pinwheel-shaped Convolution and Scale-based Dynamic L

2025-05-25 10:30:00 56

原创 YOLOv10改进策略【卷积层】| AAAI 2025 风车状卷积PConv,实现感受野的高效扩张

本文记录的是利用风车卷积改进YOLOv10的目标检测网络模型。在红外小目标检测任务中,传统卷积方式难以捕捉目标像素的空间特征,影响检测性能,因此需要更适配的卷积方式提升特征提取能力。但不同尺度的红外小目标对特征提取需求有差异,为了更好地满足这些需求,本文利用模块改进,使模型能够更精准地对齐红外小目标像素的高斯空间分布,在增强底层特征提取的同时显著扩大感受野,使网络更好地适应不同尺度红外小目标的检测需求。Pinwheel-shaped Convolution and Scale-based Dynamic L

2025-05-25 10:00:00 23

原创 RT-DETR改进策略【Conv和Transformer】| IJCAI 2024 利用FreqFormer中的CTA 通道转置注意力 二次改进HGBlock、ResNetLayer

本文记录的是利用 SFA 空间 - 频率注意力(Spatial-Frequency Attention)和 CTA 通道转置注意力(Channel Transposed Attention)模块优化 RT-DETR的目标检测网络模型。和源自图像超分辨率领域的模型,前者结合高频和通道信息到自注意力中,后者从通道维度进行自注意力计算,二者结合能够有效处理复杂的图像信息。本文将其应用到中,并进行,使网络能够综合空间、频率和通道等多种维度信息,更好地突出重要特征,从而提升对不同尺度目标和不规则形状目标的特征提取能力

2025-05-24 16:18:00 199

原创 【YOLOv10多模态融合改进】| 改进 双HS-FPN颈部结构:高级筛选特征融合金字塔,加强不同模态间的细微特征检测

HS - FPN结构由特征选择模块和特征融合模块组成。特征选择模块中,CA模块先处理输入特征图,经池化激活函数确定各通道权重以过滤特征图DM模块再对不同尺度特征图降维;特征融合模块中,利用SFF机制以高级特征为权重筛选低级特征语义信息后融合,提升模型检测能力。

2025-05-24 16:15:12 37

原创 YOLOv11改进策略【Backbone/主干网络】| CVPR 2024 替换骨干为InceptionNeXt,将大核深度卷积分解为四个并行分支,平衡速度与精度

InceptionNeXt是一种新型的卷积神经网络,旨在解决大核卷积神经网络在速度和性能之间的平衡问题。它的设计出发点基于对现有模型的分析和改进需求,结构上有独特的创新,这些设计为模型带来了显著的优势。

2025-05-24 16:14:40 185

原创 YOLOv10改进策略【Backbone/主干网络】| CVPR 2024 替换骨干为InceptionNeXt,将大核深度卷积分解为四个并行分支,平衡速度与精度

InceptionNeXt是一种新型的卷积神经网络,旨在解决大核卷积神经网络在速度和性能之间的平衡问题。它的设计出发点基于对现有模型的分析和改进需求,结构上有独特的创新,这些设计为模型带来了显著的优势。

2025-05-23 11:12:30 35

原创 RT-DETR改进策略【Backbone/主干网络】| CVPR 2024 替换骨干为InceptionNeXt,将大核深度卷积分解为四个并行分支,平衡速度与精度

InceptionNeXt是一种新型的卷积神经网络,旨在解决大核卷积神经网络在速度和性能之间的平衡问题。它的设计出发点基于对现有模型的分析和改进需求,结构上有独特的创新,这些设计为模型带来了显著的优势。

2025-05-23 09:09:02 136

原创 YOLOv12改进策略【Backbone/主干网络】| CVPR 2024 替换骨干为InceptionNeXt,将大核深度卷积分解为四个并行分支,平衡速度与精度

InceptionNeXt是一种新型的卷积神经网络,旨在解决大核卷积神经网络在速度和性能之间的平衡问题。它的设计出发点基于对现有模型的分析和改进需求,结构上有独特的创新,这些设计为模型带来了显著的优势。

2025-05-22 10:33:54 563

原创 YOLOv10改进策略【Neck】| CFC和SFC模块,独特的上下文建模和空间特征校准机制,实现精度与效率的平衡优化

本文记录的是基于CFC和SFC模块的YOLOv10模型改进方法研究。 和 模块提出了创新的特征校准策略,通过定制上下文聚合解决上下文不匹配问题,通过分组校准改善空间特征不对齐问题,能以低额外成本高效提升提取特征的质量。将和应用到网络中,通过其独特的上下文建模和空间特征校准机制,实现精度与效率的平衡优化。Context and Spatial Feature Calibration for Real-Time Semantic Segmentation现有上下文建模方法在聚合上下文时,对所有像素采用固定方式

2025-05-22 10:32:17 119

原创 【YOLOv11多模态融合改进】| 改进 双HS-FPN颈部结构:高级筛选特征融合金字塔,加强不同模态间的细微特征检测

HS - FPN结构由特征选择模块和特征融合模块组成。特征选择模块中,CA模块先处理输入特征图,经池化激活函数确定各通道权重以过滤特征图DM模块再对不同尺度特征图降维;特征融合模块中,利用SFF机制以高级特征为权重筛选低级特征语义信息后融合,提升模型检测能力。

2025-05-21 08:26:41 165

原创 YOLOv12改进策略【Neck】| CFC和SFC模块,独特的上下文建模和空间特征校准机制,实现精度与效率的平衡优化

本文记录的是基于CFC和SFC模块的YOLOv12模型改进方法研究。 和 模块提出了创新的特征校准策略,通过定制上下文聚合解决上下文不匹配问题,通过分组校准改善空间特征不对齐问题,能以低额外成本高效提升提取特征的质量。将和应用到网络中,通过其独特的上下文建模和空间特征校准机制,实现精度与效率的平衡优化。Context and Spatial Feature Calibration for Real-Time Semantic Segmentation现有上下文建模方法在聚合上下文时,对所有像素采用固定方式

2025-05-21 08:26:12 288

原创 【YOLOv12多模态融合改进】| 改进 双HS-FPN颈部结构:高级筛选特征融合金字塔,加强不同模态间的细微特征检测

HS - FPN结构由特征选择模块和特征融合模块组成。特征选择模块中,CA模块先处理输入特征图,经池化激活函数确定各通道权重以过滤特征图DM模块再对不同尺度特征图降维;特征融合模块中,利用SFF机制以高级特征为权重筛选低级特征语义信息后融合,提升模型检测能力。

2025-05-20 08:30:49 524

原创 YOLOv8改进策略【注意力机制篇】| CPCA:通道先验卷积注意力模块, 动态分配注意力权重,并利用多尺度深度卷积模块降低计算复杂度

本文记录的是。认为通道与空间维度的联合注意力,并且。在改进YOLOv8的过程中,同时还,便于集成到网络中。

2025-05-20 08:29:29 54

原创 YOLOv10改进策略【注意力机制篇】| CPCA:通道先验卷积注意力模块, 动态分配注意力权重,并利用多尺度深度卷积模块降低计算复杂度

本文记录的是。认为通道与空间维度的联合注意力,并且。在改进YOLOv10的过程中,同时还,便于集成到网络中。

2025-05-19 09:11:04 119

原创 YOLOv12改进策略【注意力机制篇】| CPCA:通道先验卷积注意力模块, 动态分配注意力权重,并利用多尺度深度卷积模块降低计算复杂度

本文记录的是。认为通道与空间维度的联合注意力,并且。在改进YOLOv12的过程中,同时还,便于集成到网络中。

2025-05-19 09:10:00 316

原创 YOLOv11改进策略【注意力机制篇】| CPCA:通道先验卷积注意力模块, 动态分配注意力权重,并利用多尺度深度卷积模块降低计算复杂度

本文记录的是。认为通道与空间维度的联合注意力,并且。在改进YOLOv11的过程中,同时还,便于集成到网络中。

2025-05-18 16:17:10 125

YOLO v10 s模型的导出文件

YOLO v10 s模型的导出文件

2024-10-24

YOLO v10 L模型的导出文件

YOLO v10 L模型的导出文件

2024-10-24

高斯滤波-Python实现

高斯滤波计算滤波窗口内各点相对于中心点的权重。权重分配的原则是:距离中心点越近的点权重越大,距离越远的点权重越小。这样,通过对窗口内各点进行加权平均,可以实现数据的平滑处理。

2024-10-24

Savitzky-Golay滤波-Python实现

选择滤波窗口:首先选择一个合适大小的滑动窗口,这个窗口在数据上滑动,对窗口内的数据进行处理。 多项式拟合:在每个滑动窗口内,使用多项式函数对数据进行最小二乘法拟合。多项式的阶数和窗口大小可以根据数据的特性进行调整,以达到最佳的滤波效果。 计算拟合值:根据拟合得到的多项式函数,计算窗口中心点的估计值,作为滤波后的结果。这个估计值反映了窗口内数据的局部趋势,从而实现了数据的平滑。

2024-10-24

指数加权移动平均平滑-Python实现

EWMA赋予每个数据点的权重随时间呈指数式递减,即越靠近当前时刻的数据点权重越大。权重分配是通过一个平滑系数α来实现的。该系数决定了近期数据相对于历史数据的权重比例。较大的α值意味着当前数据点的权重更大,平滑效果更灵敏于近期的变化;而较小的α值则使得平滑结果更加平滑,但可能会引入一定的滞后性。 ———————————————— 版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 原文链接:https://blog.csdn.net/qq_42591591/article/details/140851940

2024-10-24

中值滤波算法-Python实现

中值滤波是将窗口内的均值换成中值,进行滤波处理

2024-10-24

移动平均平滑算法-Python实现

移动平均平滑是基于平均值的概念,通过计算序列中每个数据点周围的一定数量的数据点的平均值,来平滑时间序列中的噪声和波动,从而更清晰地观察序列的趋势和周期性。

2024-10-24

卡尔曼滤波算法-Python实现

卡尔曼滤波算法-Python实现

2024-10-24

yolov10m导出的模型文件

yolov10m导出的模型文件

2024-10-24

YOLOv10b的.onnx文件

YOLO v10模型导出文件

2024-10-24

RT-DETR官方最新源码资源

YOLO 系列由于在速度和准确性之间进行了合理的权衡,已成为最流行的实时目标检测框架。然而,我们观察到 YOLO 的速度和准确性会受到非极大值抑制(NMS)的负面影响。最近,基于端到端 Transformer 的检测器(DETRs)为消除 NMS 提供了一种替代方案。尽管如此,高计算成本限制了它们的实用性,并阻碍了它们充分发挥排除 NMS 的优势。在本文中,我们提出了实时检测 Transformer(RT-DETR),据我们所知,这是第一个解决上述困境的实时端到端目标检测器。我们分两步构建 RT-DETR,借鉴先进的 DETR:首先我们专注于在提高速度的同时保持准确性,然后在保持速度的同时提高准确性。具体来说,我们设计了一个高效的混合编码器,通过解耦尺度内交互和跨尺度融合来快速处理多尺度特征,从而提高速度。然后,我们提出最小不确定性查询选择,为解码器提供高质量的初始查询,从而提高准确性。

2024-10-24

小波卷积论文:Wavelet Convolutions for Large Receptive Fields

小波卷积(Wavelet Convolutions)是一种在卷积神经网络(Convolutional Neural Networks, CNNs)中用于增加感受野(Receptive Field)同时避免过度参数化的方法。 WT 是一种时频分析工具,本文采用 Haar WT,它可以在保留一定空间分辨率的情况下对信号进行分解。通过将 WT 与卷积操作相结合,提出了 WTConv 层。 小波卷积首先对输入进行小波变换,将其分解为不同频率的子带,如通过与特定的卷积核进行深度可分离卷积实现一级 Haar WT,得到低频分量和多个高频分量。然后在不同的频率子带上进行小卷积核的卷积操作,这些小卷积核可以在更大的原始输入区域上操作,从而增加感受野。最后通过逆小波变换(IWT)将处理后的频率子带组合起来得到输出。

2024-10-24

社团管理系统

基于NetBeans的社团信息管理系统,支持社团信息的查询、修改、增加。并能根据调用数据库进行一系列的操作。

2019-01-09

基于java的社团信息管理系统

通过“javaApplication”,直接输出社团简单的操作信息。

2018-12-28

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除