YOLOv9改进策略【卷积层】| GnConv:一种通过门控卷积和递归设计来实现高效、可扩展、平移等变的高阶空间交互操作

一、本文介绍

本文记录的是利用GnConv优化YOLOv9的目标检测方法研究。YOLOv9在进行目标检测时,需要对不同层次的特征进行融合。GnConv可以考虑更高阶的空间交互,能够更好地捕捉特征之间的复杂关系,从而增强特征融合的效果,提高模型对目标的检测能力。


专栏目录:YOLOv9改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

专栏地址:YOLOv9改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!


二、HorN

YOLOv7引入了递归门控卷积gnConv)来改善目标检测效果。主干特征提取网络为CNN网络,而CNN具有平移局部性,但缺乏全局建模长距离建模的能力。为了解决这个问题,YOLOv7引入了自然语言处理领域的框架Transformer,并将其与CNN网络相结合形成了CNN Transformer架构。 通过引入递归门控卷积gnConv),YOLOv7实现高阶空间互。gnConv一种门控卷积递归设计,它具有高度的灵活性可定制性,并能够将自注意力中的二阶互扩展到任意阶,而不会引入大量额外的计算。这使得gnConv可以作为一个即插即用的模块来改进各种视觉Transformer基于卷积的模型。 通过引入递归门控卷积YOLOv7能够充分利用CNNTransformer两者的优点,提高目标检测的效果。特别是对于小目标以及密集预测任务,经过实验表明,YOLOv7引入递归门控卷积能够产生一定的提升效果。同时,这种改进方法不仅适用于YOLOv7,也可以应用于其他的YOLO网络以及目标检测网络,如YOLOv6、v4、v3、Faster RCNN、SSD等。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [YOLOv7改进之二十二:涨点神器——引入递归门控卷积gnConv)](https://blog.csdn.net/m0_70388905/article/details/126142505)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值