一、本文介绍
本文记录的是利用GnConv
优化YOLOv9
的目标检测方法研究。YOLOv9在进行目标检测时,需要对不同层次的特征进行融合。GnConv
可以考虑更高阶的空间交互,能够更好地捕捉特征之间的复杂关系,从而增强特征融合的效果,提高模型对目标的检测能力。
专栏目录:YOLOv9改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
本文记录的是利用GnConv
优化YOLOv9
的目标检测方法研究。YOLOv9在进行目标检测时,需要对不同层次的特征进行融合。GnConv
可以考虑更高阶的空间交互,能够更好地捕捉特征之间的复杂关系,从而增强特征融合的效果,提高模型对目标的检测能力。
专栏目录:YOLOv9改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进