YOLOv9改进策略【注意力机制篇】| EMA 即插即用模块,提高远距离建模依赖

一、本文介绍

本文记录的是基于EMA模块的YOLOv9目标检测改进方法研究EMA认为跨维度交互有助于通道或空间注意力预测,并且解决了现有注意力机制在提取深度视觉表示时可能带来的维度缩减问题。在改进YOLOv9的过程中能够为高级特征图产生更好的像素级注意力,能够建模长程依赖并嵌入精确的位置信息。


专栏目录:YOLOv9改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

专栏地址:YOLOv9改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!


### 改进 YOLOv8 的 EMA注意力机制 为了在 YOLOv8 中优化 EMA(指数移动平均)和注意力机制提高模型性能,可以采取以下措施: #### 1. 实现 EMA 注意力机制模块 EMA 注意力机制通过引入指数加权移动平均来增强特征图的关注度。这有助于更好地捕捉长期依赖关系并减少噪声干扰。 ```python import torch import torch.nn as nn class EMA_Attention(nn.Module): def __init__(self, channels, gamma=0.9): super(EMA_Attention, self).__init__() self.gamma = gamma self.channels = channels self.conv = nn.Conv2d(channels, channels, kernel_size=1) def forward(self, x): b, c, h, w = x.size() ema_weight = torch.zeros_like(x).to(x.device) for i in range(h): for j in range(w): if i == 0 and j == 0: ema_weight[:, :, i, j] = x[:, :, i, j] else: prev_value = ema_weight[:, :, max(i-1, 0), max(j-1, 0)] current_value = x[:, :, i, j] ema_weight[:, :, i, j] = (1 - self.gamma) * current_value + self.gamma * prev_value out = self.conv(ema_weight) return out ``` 此代码实现了 EMA 注意力机制的核心逻辑[^1]。 #### 2. 修改 `__all__` 列表 为了让新添加的 EMA 注意力机制能够被正确导入,在文件中找到 `__all__` 变量,并在其列表中加入 `"EMA_attention"`,确保前后有逗号分隔开其他项[^2]。 ```python __all__ = ( 'some_module', 'another_module', 'EMA_attention', # 添加这一行 ) ``` #### 3. 导入自定义模块 编辑 `ultralytics/nn/tasks.py` 文件,在适当位置添加如下语句以便于后续调用该功能模块。 ```python from ultralytics.nn.modules.EMA_attention import EMA_attention ``` 这些改动使得可以在训练过程中应用 EMA 注意力机制,从而进一步提升检测精度与鲁棒性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值