YOLOv11改进策略【注意力机制篇】| 添加SE、CBAM、ECA、CA、Swin Transformer等注意力和多头注意力机制

前言

这篇文章带来一个经典注意力模块的汇总,虽然有些模块已经发布很久了,但后续的注意力模块也都是在此基础之上进行改进的,对于初学者来说还是有必要去学习了解一下,以加深对模块,模型的理解。


专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

专栏地址:YOLOv11改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!


一、为什么要引入注意力机制?

来源:注意力机制的设计灵感来源于人类视觉系统。当我们在观察外界事物时,会自动将注意力集中在重要或感兴趣的区域,而忽略无关信息。计算机视觉中的注意力机制就是在试图模拟这一

### 将CBAM模块融入YOLOv11模型 为了提升YOLOv11目标检测性能,可以通过引入卷积块注意力模块(CBAM)实现更精细的特征提取。具体来说,在YOLOv11架构中的某些层之后加入CBAM模块能够显著改善模型的表现。 #### 实现方法 在YOLOv11的设计中,可以在骨干网络或者颈部部分的关键位置嵌入CBAM模块。通常的做法是在每个阶段结束处或瓶颈结构之前插入此模块: ```python import torch.nn as nn class CBAM(nn.Module): """Convolutional Block Attention Module.""" def __init__(self, channels, reduction_ratio=16, kernel_size=7): super(CBAM, self).__init__() # 定义通道注意力机制 self.channel_attention = ChannelAttention(channels, reduction_ratio) # 定义空间注意力机制 self.spatial_attention = SpatialAttention(kernel_size) def forward(self, x): out = self.channel_attention(x) * x # 应用通道注意权重 out = self.spatial_attention(out) # 进一步应用空间注意权重 return out def add_cbam_to_yolov11(model_def_path, cbam_positions=[2, 5]): """ 向指定版本的YOLOv11模型定义文件添加CBAM模块 参数: model_def_path -- 字符串形式的路径名指向YOLO配置文件. cbam_positions -- 列表表示要插入CBAM的位置索引,默认为[2, 5]. 返回值: 修改后的model_def字符串内容. """ lines = open(model_def_path).readlines() new_lines = [] count = 0 for line in lines: if '[convolutional]' in line.strip(): count += 1 if count in cbam_positions: # 插入CBAM配置项 new_lines.append('[cbam]\n') new_lines.append(line) return ''.join(new_lines) # 使用示例 modified_model_config = add_cbam_to_yolov11('path/to/yolov11.cfg', [2, 5]) with open('new_yolov11_with_cbam.cfg', 'w') as f: f.write(modified_model_config) ``` 上述代码展示了如何创建一个`add_cbam_to_yolov11()`函数来修改现有的YOLOv11配置文件,并在其特定层次间插入CBAM组件[^2]。这不仅有助于捕捉更加丰富的上下文信息,而且还能使模型更好地聚焦于重要的视觉区域,从而提高整体精度鲁棒性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值