一、本文介绍
本文记录的是利用MLLA
模块优化RT-DETR
的目标检测网络模型。MLLA
模块具有独特优势。它不同于传统模块,能同时兼顾局部特征高效建模与长距离交互学习。常见模块要么在局部特征处理上有优势但长距离交互能力弱,要么反之,而MLLA
模块克服了此问题。它融合了Mamba模型和线性注意力机制的优势,通过独特的结构设计,能够在保持计算效率的同时,精准地建模局部特征并学习长距离交互信息。本文将其用于RT-DETR
的模型改进和二次创新,能够更加关注图像中的重要特征区域,抑制背景等无关信息的干扰,从而突出目标物体的关键特征。
专栏目录:RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进