前言
在计算机视觉领域,当我们着手训练一个模型时,数据集的处理是至关重要的第一步。
其中,将数据集划分为训练集、验证集和测试集更是一项基础性且关键的操作。这篇博客分析了这一划分背后的原因、其重要意义以及如何通过代码实现,帮助大家更好地理解和运用这一技巧,保证模型训练的效果与可靠性。
专栏目录:YOLOv9改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
在计算机视觉领域,当我们着手训练一个模型时,数据集的处理是至关重要的第一步。
其中,将数据集划分为训练集、验证集和测试集更是一项基础性且关键的操作。这篇博客分析了这一划分背后的原因、其重要意义以及如何通过代码实现,帮助大家更好地理解和运用这一技巧,保证模型训练的效果与可靠性。
专栏目录:YOLOv9改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进