一、本文介绍
本文记录的是基于UniRepLKNet的YOLOv12骨干网络改进方法研究。UniRepLKNet
提出了独特的大核设计能有效捕捉图像特征,在多模态任务中展现出强大的通用感知能力。将UniRepLKNet
应用到YOLOv12
的骨干网络中,提升YOLOv12
在目标检测任务中的精度和效率 。
本文在YOLOv12
的基础上配置了原论文中unireplknet_a
, unireplknet_f
, unireplknet_p
, unireplknet_n
, unireplknet_t
, unireplknet_s
, unireplknet_b
, unireplknet_l
, unireplknet_xl
九种模型,以满足不同的需求。
专栏目录:YOLOv12改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进