一、本文介绍
本文改进双HS-FPN颈部结构,融合YOLOv10中的多模态特征,以优化目标检测网络模型。
HS-FPN
借助通道注意力机制及独特的多尺度融合策略,有效应对目标尺寸差异及特征稀缺问题。针对不同模态,其利用高级特征筛选低级特征,增强特征表达,助力模型精准定位和识别目标,减少因尺度变化及特征不足导致的检测误差,提升YOLOv10
在多模态检测任务中的准确性与稳定性。
专栏目录:《多模态模型改进》目录一览 | 专栏介绍 ,多模态的全方位改进,提供多模态模型改进完整项目包-开箱即用
专栏地址:YOLO系列模型的多模态融合改进——极易上手、非常好发文的多模态改进教程!