YOLOv12改进策略【卷积层】| AAAI 2025 风车状卷积PConv,实现感受野的高效扩张

一、本文介绍

本文记录的是利用风车卷积改进YOLOv12的目标检测网络模型。

在红外小目标检测任务中,传统卷积方式难以捕捉目标像素的空间特征,影响检测性能,因此需要更适配的卷积方式提升特征提取能力。但不同尺度的红外小目标对特征提取需求有差异,为了更好地满足这些需求,本文利用风车卷积PConv模块改进YOLOv12,使模型能够更精准地对齐红外小目标像素的高斯空间分布,在增强底层特征提取的同时显著扩大感受野,使网络更好地适应不同尺度红外小目标的检测需求。


专栏目录:YOLOv12改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进

专栏地址:YOLOv12改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!