【YOLOv11多模态融合改进】| CVPR 2024 MFM(Modulation Fusion Module,调制融合模块):动态特征加权融合,突出关键特征抑制冗余

一、本文介绍

本文记录的是利用DCMPNet中的 MFM 模块改进 YOLOv11 的多模态融合部分

MFM模块通过动态调制特征融合过程,实现了对多尺度、跨层级特征的智能聚合。将其应用于YOLOv11的改进过程中,针对目标检测中边界特征语义信息的互补性需求,缓解网络中浅层细节与深层语义融合不足的问题


专栏目录:《多模态模型改进》目录一览 | 专栏介绍 ,多模态的全方位改进,提供多模态模型改进完整项目包-开箱即用

专栏地址:YOLO系列模型的多模态融合改进——极易上手、非常好发文的多模态改进教程!

LightCNN 中的 MFM(Max-Feature-Map)激活函数是一种特殊的非线性变换机制,其设计目的是为了提高卷积神经网络在处理具有大量噪声标签的人脸识别任务时的表现。MFM 的核心思想是从两个输入特征图中选择每个位置上的最大值作为输出特征图的一部分,从而实现一种形式的特征选择[^1]。 ### MFM 激活函数的工作原理 当一对特征图通过 MFM 层时,对于每一对对应的像素点,MFM 会选取这两个特征图中数值较大的那个作为输出特征图中的相应位置的值。这样做的结果是,最终得到的特征图保留了原始两个特征图中最显著的特征,同时减少了冗余信息。这种机制有助于模型学习到更加鲁棒和区分度高的特征表示[^2]。 ### 在轻量级 CNN 中的应用 在 LightCNN 架构中,MFM 被用来替代传统的 ReLU 激活函数,并且通常与特定的卷积层结合使用。例如,在 LightCNN9 和 LightCNN29 等不同深度的网络结构中,MFM 不仅帮助减少了模型参数数量,还促进了更有效的特征选择过程,这使得即使是在计算资源受限的情况下也能保持较高的识别准确率[^3]。 ### 实现方式 下面是一个简化的 Python 示例,展示如何使用 PyTorch 来实现一个基本的 MFM 层: ```python import torch import torch.nn as nn class MFM(nn.Module): def __init__(self, in_channels): super(MFM, self).__init__() # 假设每个输入通道都有一个对应的输出通道 self.conv = nn.Conv2d(in_channels, in_channels // 2, kernel_size=1) def forward(self, x): # 分割输入张量为两部分 x1, x2 = torch.chunk(x, 2, dim=1) # 应用卷积操作后取最大值 return torch.max(self.conv(x1), self.conv(x2)) ``` 在这个例子中,`torch.chunk` 函数被用于将输入张量沿通道维度分割成两个相等的部分。然后,对每一部分分别应用相同的卷积操作,并利用 `torch.max` 函数来获取两者之间的最大值。这个简单的实现展示了 MFM 如何工作,但实际部署时可能需要根据具体需求调整细节。 ### 总结 综上所述,MFM 提供了一种有效的方法来增强卷积神经网络在处理含噪数据集时的能力。它不仅能够促进特征的选择过程,而且还能生成紧凑且富有表现力的特征表示,这对于构建高效的轻量级 CNN 模型尤为重要。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值