
YOLOv8改进专栏
文章平均质量分 97
本专栏会持续复现顶会,以及一些最新的模块调用,用于改进YOLOv8的测试精度,力求详细明了,以论文的角度,手把手的教程专为学习,改进YOLO模型算法的同学设计,欢迎大家订阅。
优惠券已抵扣
余额抵扣
还需支付
¥99.90
¥299.90
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
Limiiiing
YOLO系列,RT-DETR模型、多模态融合改进。专栏内所有文章均配置完整代码和详细步骤,亲测可行,快速涨点。订阅专栏享受改进,写作,选刊等答疑内容,助力科研,发文无忧。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
YOLOv8改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
1️⃣本专栏已更新150多种不同的改进方法,所使用并改进的每一个模块均包含详细的模块分析、原理讲解、个人总结、多种改进方式以及完整的修改流程,所有改进100%可直接运行。2️⃣所有改进点均为近三年顶会,顶刊提出的先进算法,将其融入到中,紧跟学术热点,适应不同的任务场景。3️⃣团队内发表数篇SCI论文,熟悉完整的发表流程,订阅专栏即可进群享受模型训练、模型改进、论文写作、投稿选刊,从入门到论文的各种答疑内容。4️⃣专栏内容会持续更新,最近更新时间:2024-12-24。项目介绍在大家购买专栏后,加入学原创 2024-12-24 13:26:10 · 6643 阅读 · 2 评论 -
YOLOv8改进入门篇 | 手把手讲解改进模块如何实现高效涨点,以SimAM注意力模块为例
本文记录的是基于SimAM注意力模块的YOLOv8目标检测方法研究。SimAM注意力模块通过优化能量函数来获得每个神经元的三维权重,而或增加计算复杂度。若是有轻量化需求的小伙伴,无参的注意力模块也许是一个不错的选择。原创 2024-12-24 13:00:59 · 972 阅读 · 0 评论 -
YOLOv8改进策略【卷积层】| CVPR 2025:动态双曲正切(Dynamic Tanh,DyT)模块,维持模型性能与训练稳定性
本文记录的是利用模块优化的目标检测网络模型。DyT(Dynamic Tanh,动态双曲正切模块) 的设计旨在,替代归一化层,在无需计算激活统计量的情况下实现对极端值的压缩和输入的动态缩放。本文将深入研究的原理,并将其应用到中,通过以元素级操作替换归一化层、保留非线性压缩特性,维持模型性能与训练稳定性。Transformers without Normalization归一化层在现代神经网络中应用广泛,被视为训练深度网络的关键组件。然而,研究发现Transformer中的层归一化(LN)层映射输入到输出的曲线原创 2025-08-06 17:05:02 · 93 阅读 · 0 评论 -
YOLOv8改进策略【YOLO和Mamba】| CVPR 2025:EfficientViM 压缩隐藏状态空间进行通道混合、单头设计减少内存操作,提升目标检测效率与精度
本文记录的是利用模块优化的目标检测网络模型。EfficientViM Block(基于隐藏状态混合器的状态空间对偶性模块) 的设计旨在,提升特征提取效率,同时兼顾全局依赖捕捉与局部细节保留。本文将深入研究的原理,并将其应用到中,通过重构特征提取流程、减少内存绑定操作、融合多阶段特征,增强模型在资源受限环境下的检测性能与速度。EfficientViM: Efficient Vision Mamba with Hidden State Mixer based State Space DualityEfficie原创 2025-08-04 13:19:15 · 103 阅读 · 0 评论 -
YOLOv8改进策略【卷积层】| CVPR 2024:LEGM 局部特征嵌入全局特征提取 适用于低质量图像特征提取任务
本文记录的是利用模块优化的目标检测网络模型。LEGM(Local Feature-Embedded Global Feature Extraction Module,局部特征嵌入的全局特征提取模块) 的设计旨在,增强特征表示能力,同时捕捉局部细节与全局依赖。本文将深入研究的原理,并将其应用到中,通过融合局部与全局特征、引入深度信息,增强特征表示能力。Depth Information Assisted Collaborative Mutual Promotion Network for Single Ima原创 2025-07-31 22:01:51 · 155 阅读 · 0 评论 -
YOLOv8改进策略【Neck】| SDFM 表层细节融合模块,利用通道-空间注意力机制,实现深层与浅层特征融合,抑制噪声干扰
本文记录的是利用SDFM 模块改进 YOLOv8 的颈部融合部分。SDFM模块(Surface Detail Fusion Module,表层细节融合模块) 通过在特征提取网络的浅层引入通道-空间注意力机制,动态生成深层与浅层特征融合权重。该模块可自适应保留不同模态中的独特信息,抑制背景噪声与光照干扰,实现低层细节的精准对齐与互补增强,为后续检测提供高保真度的底层特征表示,从而提升模型在复杂场景下的目标检测鲁棒性与定位准确性。Rethinking the necessity of image fusion原创 2025-07-09 08:30:35 · 60 阅读 · 0 评论 -
YOLOv8改进策略【Neck】| PSFM,深层语义融合模块 引入深层与浅层交叉注意力机制,动态建模不同层级的全局语义依赖关系
本文记录的是利用PSFM 模块改进 YOLOv8 的颈部融合部分。PSFM模块(Profound Semantic Fusion Module,深层语义融合模块) 通过在特征提取网络的深层引入跨模态交叉注意力机制,动态建模红外与可见光特征的全局语义依赖关系。本文将其应用到的颈部部分,融合深层与浅层特征,捕捉长距离语义关联,增强融合特征的判别性与场景理解能力,为检测头提供包含全局上下文的高层语义表示,从而提升模型在复杂场景下的目标检测准确率与语义推理鲁棒性。Rethinking the necessity o原创 2025-07-01 14:28:35 · 68 阅读 · 0 评论 -
YOLOv8改进策略【Neck】| CVPR 2024 MFM(Modulation Fusion Module,调制融合模块):动态特征加权融合,突出关键特征抑制冗余
本文主要利用DCMPNet中的 MFM 模块优化 YOLOv8 的目标检测网络模型。模块通过动态调制特征融合过程,实现了对多尺度、跨层级特征的智能聚合。将其应用于的改进过程中,针对目标检测中边界特征与语义信息的互补性需求,缓解网络中浅层细节与深层语义融合不足的问题。Depth Information Assisted Collaborative Mutual Promotion Network for Single Image Dehazing在图像去雾网络中,不同层级和类型的特征包含着互补的信息(如浅层的原创 2025-06-24 08:42:44 · 101 阅读 · 0 评论 -
YOLOv8改进策略【Neck】| BMVC 2024 MASAG 模块(多尺度自适应空间注意门):动态感受野与空间注意力增强多尺度目标检测精度
本文主要利用MSA2NetMSA^{2}NetMSA2Net 中的 MASAG 模块优化 YOLOv8 的目标检测网络模型。(Multi - Scale Adaptive Spatial Attention Gate) 模块通过动态调制空间注意力权重与多尺度感受野,实现了对跨层级特征图中局部细节与全局语义的智能聚合。将其应用于的改进过程中,针对目标检测中浅层边界特征与深层语义信息的互补性需求,增强对多尺度目标的特征表达能力,提升复杂场景下的检测精度与边界定位准确性。MSA^2Net: Multi-scale原创 2025-06-23 08:42:20 · 142 阅读 · 0 评论 -
YOLOv8改进策略【Neck】| arXiv 2024 MAFPN:多分支辅助特征金字塔网络 | 通过双向辅助融合与异构卷积机制,解决传统PAFPN多尺度特征融合不充分与小目标检测不足问题
本文记录的是利用MAFPN颈部结构改进YOLOv8的目标检测网络模型。通过引入双向辅助融合机制优化特征处理流程,在自底向上路径利用 SAF 模块融合主干浅层特征与颈部输出,并保留浅层空间信息,为小目标检测提供更丰富细节;自顶向下路径通过 AAF 模块建立密集连接,聚合浅层高 / 低分辨率层、同级层及前层特征,均衡各层通道数后实现多向梯度信息交互,增强中 / 大目标特征表达。将其应用到中,解决传统特征金字塔在多尺度信息整合中的不足,提升多尺度目标检测的精度与特征表达的丰富性。Multi-Branch Auxi原创 2025-06-20 14:56:08 · 202 阅读 · 0 评论 -
YOLOv8改进策略【卷积层】| AAAI 2025 FBRT-YOLO 应用YOLOv8 加强跨层特征融合能力与多尺度适应性,并二次改进C2f
FBRT - YOLO是一种用于实时航拍图像检测的模型,其模型结构包含两个核心的轻量级模块,在航拍图像检测任务中展现出了良好的性能。原创 2025-06-14 10:30:00 · 104 阅读 · 0 评论 -
YOLOv8改进策略【Neck】| 替换颈部结构为TPAMI 2025的Hyper-YOLO
Hyper-YOLO是一种创新的目标检测模型,将超图计算集成到YOLO架构中,以捕捉视觉特征之间复杂的高阶相关性,从而提升目标检测性能。原创 2025-06-10 08:38:38 · 86 阅读 · 0 评论 -
YOLOv8改进策略【Backbone/主干网络】| CVPR 2025 替换骨干为MambaOut,去除冗余结构,挖掘视觉Mamba潜力
MambaOut是一种基于Gated CNN块构建的模型,其设计出发点基于对Mamba模型特性及视觉任务特点的深入分析,在结构上有独特之处,并展现出多方面优势。原创 2025-06-06 08:35:02 · 210 阅读 · 0 评论 -
YOLOv8改进策略【Conv和Transformer】| IJCAI 2024 利用FreqFormer中的SFA 空间 - 频率注意力和CTA 通道转置注意力 二次改进C2f
在FreqFormer模型中,SFA(Spatial-Frequency Attention)和CTA(Channel Transposed Attention)模块是关键组成部分,它们针对传统Transformer在图像超分辨率任务中的不足而设计,旨在更好地恢复高频细节,提升模型性能。原创 2025-06-02 10:00:00 · 69 阅读 · 0 评论 -
YOLOv8改进策略【卷积层】| AAAI 2025 风车状卷积PConv,实现感受野的高效扩张
本文记录的是利用风车卷积改进YOLOv8的目标检测网络模型。在红外小目标检测任务中,传统卷积方式难以捕捉目标像素的空间特征,影响检测性能,因此需要更适配的卷积方式提升特征提取能力。但不同尺度的红外小目标对特征提取需求有差异,为了更好地满足这些需求,本文利用模块改进,使模型能够更精准地对齐红外小目标像素的高斯空间分布,在增强底层特征提取的同时显著扩大感受野,使网络更好地适应不同尺度红外小目标的检测需求。Pinwheel-shaped Convolution and Scale-based Dynamic Lo原创 2025-05-31 10:00:00 · 128 阅读 · 0 评论 -
YOLOv8改进策略【Backbone/主干网络】| CVPR 2024 替换骨干为InceptionNeXt,将大核深度卷积分解为四个并行分支,平衡速度与精度
InceptionNeXt是一种新型的卷积神经网络,旨在解决大核卷积神经网络在速度和性能之间的平衡问题。它的设计出发点基于对现有模型的分析和改进需求,结构上有独特的创新,这些设计为模型带来了显著的优势。原创 2025-05-27 09:02:18 · 154 阅读 · 0 评论 -
YOLOv8改进策略【注意力机制篇】| CPCA:通道先验卷积注意力模块, 动态分配注意力权重,并利用多尺度深度卷积模块降低计算复杂度
本文记录的是。认为通道与空间维度的联合注意力,并且。在改进YOLOv8的过程中,同时还,便于集成到网络中。原创 2025-05-20 08:29:29 · 115 阅读 · 0 评论 -
YOLOv8改进策略【注意力机制篇】| 利用SegNeXt中的卷积注意力模块MSCA,捕捉多尺度的上下文信息,更加轻量高效(含C2f二次创新)
本文记录的是。SegNeXt中的MSCA模块认为,并且。在改进的过程中能够,为模型产生,为视觉任务提供更强大的特征表示。原创 2025-05-18 16:16:37 · 113 阅读 · 0 评论 -
YOLOv8改进策略【损失函数篇】| AAAI 2025 SD Loss,基于目标尺度动态调整尺度损失和位置损失的影响系数,减少 IoU 标签波动
在红外小目标检测任务里,基于交并比的损失存在波动问题,像边界框(BBox)标签的IoU损失波动最高可达86%,较小目标的IoU损失稳定性更差,严重影响模型稳定性和回归效果。同时,现有损失函数没有充分考虑不同目标尺度下对尺度和位置的敏感度差异,,并且掩码标签的位置损失在处理漏检物体时难以收敛,容易产生误报。这些问题限制了模型在不同尺度目标上的检测性能,为解决这些问题,提出了损失函数。原创 2025-05-16 08:27:50 · 205 阅读 · 0 评论 -
在YOLOv8的项目包中配置并运行TPAMI 2025的Hyper-YOLO模型
Hyper-YOLO是一种创新的目标检测模型,将超图计算集成到YOLO架构中,以捕捉视觉特征之间复杂的高阶相关性,从而提升目标检测性能。原创 2025-05-13 08:29:06 · 316 阅读 · 0 评论 -
YOLOv8改进策略【Neck】| CFC和SFC模块,独特的上下文建模和空间特征校准机制,实现精度与效率的平衡优化
本文研究了基于CFC(Context Feature Calibration)和SFC(Spatial Feature Calibration)模块的YOLOv8模型改进方法。CFC模块通过定制上下文聚合解决上下文不匹配问题,SFC模块通过分组校准改善空间特征不对齐问题,两者均以低额外成本提升特征提取质量。CFC模块包含级联金字塔池化(CPP)块和上下文重校准块(CRB),通过计算像素与上下文的相似度,定制上下文并突出有益信息。SFC模块通过分组校准和特征重采样,有效改善空间特征不对齐问题。原创 2025-05-09 09:58:17 · 121 阅读 · 0 评论 -
YOLOv8改进策略【损失函数篇】| 替换Powerful-IoU(PIoU),增强对中等质量锚框的关注力,引导锚框更直接、高效地回归
现有基于IoU的损失函数存在不合理的惩罚因子,导致锚框在回归过程中出现面积扩大的问题,使得回归效率降低、收敛速度变慢。同时,这些损失函数在反映锚框与目标框之间的差异、考虑目标框大小以及某些情况下的性能表现等方面存在局限性。在目标检测任务中,边界框回归的损失函数对检测性能至关重要。Powerful-IoU(PIoU)及其升级版PIoU v2正是为解决现有损失函数存在的问题而设计的。本文利用PIoU改进YOLOv8的损失函数,提高模型精度。原创 2025-05-06 09:07:03 · 297 阅读 · 0 评论 -
YOLOv8改进策略【Neck】| ACMMM 2024 WFU:小波特征上采样 | 通过小波变换的频率分解与跨尺度融合机制,解决传统上采样过程中的混叠和细节丢失问题
WFU模块通过小波变换的频率分解与跨尺度融合机制,解决了传统上采样过程中的混叠和细节丢失问题,实现了高效、高保真的面部细节重建。其轻量化设计和强泛化能力使其成为提升人脸超分辨率模型性能的关键组件,尤其在平衡计算效率与重建质量方面表现突出。原创 2025-05-03 19:40:21 · 160 阅读 · 0 评论 -
YOLOv8改进策略【Backbone/主干网络】| 替换骨干为PoolFormer,基于平均池化的Token混合器,通过聚合局部邻域特征实现信息交互
本文记录的是基于PoolFormer的YOLOv8骨干网络改进方法研究。提出了创新的MetaFormer通用架构,通过极简单的池化操作实现Token混合,能以低参数和计算成本高效捕捉图像全局与局部特征。将应用到的骨干网络中,通过其分层结构和Token混合机制,实现精度与效率的平衡优化。本文在的基础上配置了原论文中, , , , 五种模型,以满足不同的需求。MetaFormer Is Actually What You Need for Vision在计算机视觉领域,Transformer模型取得了显著成功,原创 2025-04-25 08:37:59 · 104 阅读 · 0 评论 -
YOLOv8改进策略【Conv和Transformer】| 引入PoolFormerBlock模块,基于平均池化的Token混合器,通过聚合局部邻域特征实现信息交互
本文记录的是基于PoolFormerBlock的YOLOv8模型改进方法研究。提出了创新的MetaFormer通用架构,通过极简单的池化操作实现Token混合,能以低参数和计算成本高效捕捉图像全局与局部特征。将应用到的骨干网络中,通过其分层结构和Token混合机制,实现精度与效率的平衡优化。MetaFormer Is Actually What You Need for Vision在计算机视觉领域,Transformer模型取得了显著成功,普遍认为其基于注意力的Token混合模块是性能的关键。然而,后续研原创 2025-04-25 08:37:21 · 103 阅读 · 0 评论 -
YOLOv8在新版本的ultralytics项目包如何配置添加新的模块(base_modules、repeat_modules)
本文主要讲解YOLOv8如何在8.3.65版本以后的ultralytics项目包中配置添加新的模块。本文使用的最新版本 8.3.108。原创 2025-04-18 13:41:51 · 236 阅读 · 0 评论 -
深入解析 YOLOv8 项目包中的文件结构和各文件作用
在这篇博客中,我将深入分析YOLOv8项目包中各个文件的作用,对整个项目的文件结构有更清晰的认识。原创 2025-04-07 13:30:16 · 345 阅读 · 0 评论 -
YOLOv8改进策略【卷积层】| RFEM:感受野增强模块, 解决多尺度目标检测中因感受野不足导致的小目标信息丢失问题
RFE模块(Receptive Field Enhancement Module)的设计出发点是解决多尺度人脸检测中因感受野不足导致的小目标信息丢失问题。传统特征金字塔网络(如FPN)在处理小尺度人脸时,多次卷积操作会导致浅层特征的空间信息逐渐丢失,而深层特征虽语义丰富但空间分辨率较低。RFE模块通过引入扩张卷积,在不增加计算量的前提下扩大有效感受野,增强模型对不同尺度人脸的特征表达能力。原创 2025-03-27 14:40:00 · 253 阅读 · 0 评论 -
YOLOv8改进策略【Neck】| SEAM:分离和增强注意模块,解决复杂场景下的小目标遮挡问题
本文记录的是利用 SEAM 模块优化 YOLOv8 的目标检测网络模型。的设计出发点在于解决复杂场景下的人脸遮挡问题,相当于是小目标被其他物体部分遮挡时,传统方法因特征缺失导致检测精度下降的问题。该模块通过增强未遮挡区域的特征响应并补偿被遮挡区域的信息损失,提升模型对遮挡小目标的检测能力。YOLO-FaceV2: A Scale and Occlusion Aware Face DetectorSEAM模块(Separated and Enhancement Attention Module)的设计出发点是原创 2025-03-27 14:36:48 · 326 阅读 · 0 评论 -
YOLOv8改进策略【Conv和Transformer】| 引入CVPR-2024 RepViT 轻量级的Vision Transformers模块 RepViTBlock
本文记录的是基于RepVit的YOLOv8轻量化改进方法研究。RepVit的网络结构借鉴ViT的设计理念,通过分离的token mixe和减少推理时的计算和内存成本,同时减少扩展比率并增加宽度,降低延迟,并通过来弥补参数大幅减少的问题,在轻量化的同时提高准确性。原创 2025-03-21 14:52:39 · 296 阅读 · 0 评论 -
YOLOv8改进策略【独家融合改进】| StarNet + 小目标检测头,加强跨尺度的上下文特征融合,提高小目标检测能力
P3/8 - small检测头原始模型中的P3/8特征层对应的检测头主要用于检测相对较小的目标。其特征图大小相对较大,空间分辨率较高。适合检测尺寸大概在8x8到32x32像素左右的目标。P4/16 - medium检测头这个检测头对应的P4/16特征层经过了更多的下采样操作,相比P3/8特征图空间分辨率降低,但通道数增加,特征更抽象且有语义信息。它主要用于检测中等大小的目标,尺寸范围大概在32x32到64x64像素左右。P5/32 - large检测头P5/32。原创 2025-03-18 09:41:17 · 348 阅读 · 0 评论 -
YOLOv8计算COCO指标和TIDE指标,小目标检测必备,更全面的评估和指导模型性能,包含完整步骤和代码
COCO指标能够直观了解模型在目标时的效果;TIDE指标专注于对进行分类和分析,从揭示模型的性能问题,使模型评估更加全面和深入(本文提供了完整的实现代码和配置步骤)。例如,论文中COCO的指标内容展示:论文中TIDE。原创 2025-03-14 19:49:35 · 300 阅读 · 4 评论 -
YOLOv8改进策略【SPPF】| 将特征金字塔池化修改为:SPPCSPC,提升模型的特征提取能力和计算效率。
本文记录的是。YOLOv7中的SPPCSPC(Spatial Pyramid Pooling Cross Stage Partial Connections)模块是一种结合了(SPP)和(CSP)的改进结构,本文将其添加到YOLOv8中,原创 2025-03-01 12:45:00 · 497 阅读 · 0 评论 -
YOLOv8改进策略【SPPF】| 将特征金字塔池化修改为:SPPELAN ,多尺度特征提取与高效特征融合
本文记录的是。通过与,提升模型检测精度和鲁棒性。原创 2025-03-01 11:00:00 · 341 阅读 · 0 评论 -
YOLOv8改进策略【独家融合改进】| U-Net V2 + CCFF,加强跨尺度的上下文特征融合,提高模型特征提取能力
本文记录的是基于U-Net V2和CCFF结构的YOLOv8目标检测改进方法研究。强大的特征提取能力与结构出色的跨尺度上下文特征融合优势相结合,既保留了细节特征的准确性,又增强了语义特征的指导作用,使得最终的特征表示更加完善和准确,有助于提高模型对各种图像细节和语义信息的理解和处理能力,从而在各类任务中取得更好的效果。U-NET V2: RETHINKING THE SKIP CONNECTIONS OF U-NET FOR MEDICAL IMAGE SEGMENTATION以下是对网络的详细介绍:由、和原创 2025-02-27 09:15:28 · 253 阅读 · 0 评论 -
YOLOv8改进策略【独家融合改进】| 模型轻量化二次改进:StarNet + FreqFusion,极限降参,适用专栏内所有轻量化模型
FreqFusion是一种旨在解决密集图像预测任务中特征融合问题。原创 2025-02-27 09:11:06 · 479 阅读 · 0 评论 -
YOLOv8改进策略【Head】| (独家改进)检测头添加Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
本文记录的是利用优化的检测头。通过自注意力机制能够获取全局信息,但资源占用较大。卷积操作资源占用较少,但只能根据卷积核的大小获取局部信息。通过卷积调制操作简化了自注意力机制,更有效地利用了大核卷积,在视觉识别任务中表现出较好的性能。Conv2Former: A Simple Transformer-Style ConvNet for Visual Recognition是一种用于视觉识别的新型卷积网络架构,其设计的原理和优势如下:采用金字塔结构,与和网络类似,共四个阶段,每阶段特征图分辨率不同,连续阶段间使原创 2025-02-24 08:41:53 · 189 阅读 · 0 评论 -
YOLOv8改进策略【Head】| (独家改进)轻量化检测头:利用 EfficientNet 中的移动倒置瓶颈模块 MBConv 改进检测头
本文记录的是基于移动倒置瓶颈 MBConv 的 YOLOv8的检测头轻量化改进方法研究。采用了独特的倒置瓶颈结构,通过的操作以及,在高效提取特征的同时极大地降低了计算量。本文将的设计优势融入检测头中,使其在目标检测任务中不仅能够更精准地识别各类目标,还能在计算资源有限的情况下快速响应,展现出更为卓越的实时检测能力。EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks的实现代码如下:四、创新模块4.1 改进点1⭐原创 2025-02-23 10:00:00 · 318 阅读 · 0 评论 -
YOLOv8改进策略【Head】| (独家改进)结合 ICME-2024 中的PPA注意力模块,自研带有注意力机制的小目标检测头
本文记录的是利用PPA (并行补丁感知注意模块)改进YOLOv8的检测头。通过改进传统卷积,形成带有注意力机制的小目标检测头,使模型能够更好地关注小目标的重要信息。HCF-Net: Hierarchical Context Fusion Network for Infrared Small Object Detection采用多分支特征提取策略,通过不同分支提取不同尺度和层次的特征。利用局部、全局和串行卷积分支,对输入特征张量进行处理。通过控制 patch size参数实现局部和全局分支的区分,计算非重叠原创 2025-02-23 10:00:00 · 231 阅读 · 0 评论 -
YOLOv8改进策略【Head】| 结合CVPR-2024 中的DynamicConv 动态卷积 改进检测头, 优化模型(独家改进)
在大规模视觉预训练中,通常模型的性能受到数据、参数和FLOP三个关键因素的影响。一般来说,模型的参数数量越多,FLOP也越高,但在移动设备等对计算资源有限制的场景下,需要低FLOP的模型同时又希望模型能从大规模预训练中受益。传统的方法很难在增加参数的同时保持低FLOP,因此需要一种新的设计来解决这个问题,模块应运而生。原创 2025-02-22 08:37:05 · 376 阅读 · 0 评论