深度学习在光谱建模的领域应用广泛,而PyTorch是目前最流行的深度学习框架之一。为了充分利用GPU加速深度学习模型的训练和推理,我们需要安装CUDA和cuDNN。本文以个人的4060 Ti为例,介绍如何安装CUDA 12.1、cuDNN以及基于CUDA 12.1的PyTorch。供各位参考。
1. 安装Anaconda
首先,我们需要安装Anaconda,它是一个方便的Python环境管理工具。访问Anaconda官网下载页面(Download Now | Anaconda),选择适合自己操作系统的版本下载并安装。
2. 安装CUDA 12.1
访问NVIDIA官网的CUDA 12.1下载页面(CUDA Toolkit 12.1 Downloads | NVIDIA Developer),根据个人系统选择合适的版本,一般为10或11。下载并安装CUDA 12.1。
3. 安装cuDNN
访问NVIDIA官网的cu