高光谱特征波段选择:基于递归特征消除的方法

在高光谱成像技术的应用中,有效选择最具代表性的特征波段对提高分类或预测的性能起着至关重要的作用。本文介绍了一种基于递归特征消除(RFE)的高光谱特征波段选择方法,并提供了相应的Python实现。

# 导入所需的库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeClassifier
from sklearn.feature_selection import RFE
from sklearn.model_selection import cross_val_score

# 设置参数
min_features = 10
max_features = 50

# 读取数据
# ...(读取CSV文件代码)

# 提取特征和标签
# ...(提取特征和标签代码)

# 特征选择
clf = DecisionTreeClassifier()
selector = RFE(clf, n_features_to_select=max_features, step=1)
selector = selector.fit(X_train, y_train)

# 计算交叉验证得分
# ...(计算交叉验证得分代码)

# 获取最优特征
# ...(获取最优特征代码)

# 输出结果
print("最优特征数 : %d" % optimal_num_features)
print("最优特征为:", op_feature_list[:optimal_num_features])
print("被选择的特征为True :", selector.support_)
print("特征重要性排序 :", selector.ranking_)
print("选择的特征索引:", selected_feature_indices[:optimal_num_features])

# 绘制图表
# ...(绘制交叉验证得分曲线代码)

这种方法能够从大量光谱波段中筛选出最优的特征子集,这些特征代表着光谱中最关键的信息,有助于提高模型建立的

### PCA在特征波段筛选中的应用 主成分分析(Principal Component Analysis, PCA)是一种常用的线性降维技术,其核心思想是通过正交变换将一组可能存在相关性的变量转换成一组线性无关的变量。这些新变量被称为主成分,它们按照方差大小依次排列[^2]。 #### 数据预处理阶段 在进行PCA之前,通常需要对原始数据进行标准化处理。这是因为不同维度的数据可能具有不同的量纲或数值范围,如果不先对其进行标准化,则可能导致某些维度占据主导地位而掩盖其他重要信息。具体来说,可以通过减去均值并除以标准差来实现这一目标: ```python from sklearn.preprocessing import StandardScaler scaler = StandardScaler() data_standardized = scaler.fit_transform(data_raw) ``` #### 主成分计算过程 完成数据标准化之后,下一步便是实际执行PCA操作。这一步骤涉及协方差矩阵构建以及特征向量求解等内容。幸运的是,在Python中借助`sklearn.decomposition.PCA`模块能够轻松完成上述工作流程: ```python from sklearn.decomposition import PCA pca_model = PCA(n_components=0.95) # 设置保留95%的信息量 principal_components = pca_model.fit_transform(data_standardized) explained_variance_ratio = pca_model.explained_variance_ratio_ cumulative_explained_variance = np.cumsum(explained_variance_ratio) ``` 这里需要注意参数`n_components`的选择方式有两种:一种是指定具体的主成分数目;另一种则是指定希望保持的整体信息比例。后者更为灵活一些,因为它允许算法自动决定所需的最少主成分数目以便达到设定阈值以上累积贡献率的要求。 #### 结果解释与波段选取 经过PCA变换得到的新特征空间里每一维都代表了一个方向上的最大变化趋势。对于遥感影像而言,这意味着每一个新的“虚拟波段”实际上是由多个原生光谱波段加权组合而成的结果。因此,如果仅关注少数几个最重要的主成分的话,就相当于间接实现了针对输入波段的有效筛选目的[^3]。 然而值得注意的是,尽管这种方法简单高效,但它也有一定局限性。比如它假设各个观测样本之间相互独立同分布,并且忽略了潜在的空间结构特性等因素的影响。所以在实际应用场景当中还需要结合具体情况综合考虑多种因素来进行最终决策[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值