数据结构_时间复杂度_1

数据结构指的是 “ 一组数据的存储结构 ” ,算法指的是 “ 操作数据的方法 ” 。
数据结构是为算法服务的,算法是要作用再特定的数据结构上的。在这里插入图片描述
10个数据结构:数组、链表、栈、队列、散列表、二叉树、堆、跳表、图、Trie树;
10个算法:递归、排序、二分查找、搜索、哈希算法、贪心算法、分治算法、回溯算法、动态规划、字符串匹配算法。

一、复杂度分析

什么是复杂度分析?

  1. 数据结构和算法解决是 “ 如何让计算机更快时间、更省空间的解决问题 ” 。
  2. 因此需从执行时间和占用空间两个维度来评估数据结构和算法的性能。
  3. 分别用时间复杂度和空间复杂度两个概念来描述性能问题,二者统称为复杂度。
  4. 复杂度描述的是算法执行时间(或占用空间)与数据规模的增长关系。

1.1 大 O 复杂度表示法

     /**
     * 每行代码运行时间为:unit_time
     *
     * 总共花费时间:(2n+1)*unit_time
     * T(n) =(2n+1)*unit_time
     */
    private static void addSum(int n) {
        int sum = 0;
        for (int i = 1; i <= n; ++i) {
            sum = sum + i;
        }
    }


    /**
     * 总时间: (2n*n +2n+1)*unit_time
     * T(n) = (2n*n +2n+1)*unit_time
     */
    private static void addSum2(int n) {
        int sum = 0;
        for (int i = 1; i <= n; ++i) {
            int j = 1;
            for (int y = 1; j <= n; ++j) {
                sum = sum + i * j;
            }

        }
    }

尽管我们不知道unit_time的具体值,但是通过这两段代码执行时间的推导过程,我们可以得到一个非常重要的规律,那就是,所有代码的执行时间T(n)与每行代码的执行次数n成正比。
我们可以把这个规律总结成一个公式。注意,大 O 就要登场了!
在这里插入图片描述
T(n) 我们已经讲过了,它表示代码执行的时间; n 表示数据规模的大小; f(n) 表示每行代码执行的次数总和。因为这是一个公式,所以用 f(n) 来表示。公式中的 O ,表示代码的执行时间 T(n) 与 f(n) 表达式成正比。
所以,第一个例子中的T(n) = O(2n+1),第二个例子中的T(n) = O(2n*n +2n+1)。这就是大O时间复杂度表示法。大O时间复杂度实际上并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度(asymptotic time complexity),简称时间复杂度。
当 n 很大时,你可以把它想象成 10000 、 100000 。而公式中的低阶、常量、系数三部分并不左右增长趋势,所以都可以忽略。我们只需要记录一个最大量级就可以了,如果用大O表示法表示刚讲的那两段代码的时间复杂度,就可以记为:T(n) = O(n); T(n) = O(n 2 )。

1.2 时间复杂度分析

如何分析一段代码的时间复杂度

1.2.1 只关注循环执行次数最多的一段代码

private static int cal(int n) {
        int sum = 0;
        int i = 1;
        for (; i <= n; ++i) {
            sum = sum + i;
        }
        return sum;
    }

其中第 2 、 3 行代码都是常量级的执行时间,与 n 的大小无关,所以对于复杂度并没有影响。循环执行次数最多的是第 4 、 5 行代码,所以这块代码要重点分析。前我们也讲过,这两行代码被执行了 n 次,所以总的时间复杂度就是 O(n) 。

1.2.2 加法法则:总复杂度等于量级最大的那段代码的复杂度

    private static int test(int n) {
        int sum_1 = 0;
        int p = 1;
        for (; p < 100; ++p) {
            sum_1 = sum_1 + p;
        }
        int sum_2 = 0;
        int q = 1;
        for (; q < n; ++q) {
            sum_2 = sum_2 + q;
        }
        int sum_3 = 0;
        int i = 1;
        int j = 1;
        for (; i <= n; ++i) {
            j = 1;
            for (; j <= n; ++j) {
                sum_3 = sum_3 + i * j;
            }
        }
        return sum_1 + sum_2 + sum_3;
    }

这个代码分为三部分,分别是求 sum_1 、 sum_2 、 sum_3 。我们可以分别分析每一部分的时间复杂度,然后把它们放到一块儿,再取一个量级最大的作为整段代码的复杂度。
第一段的时间复杂度是多少呢?这段代码循环执行了 100 次,所以是一个常量的执行时间,跟 n 的规模无关。
这里我要再强调一下,即便这段代码循环 10000 次、 100000 次,只要是一个已知的数,跟 n 无关,照样也是常量级的执行时间。当 n 无限大的时候,就可以忽略。尽管对代码的执行时间会有很大影响,但是回到时间复杂度的概念来说,它表示的是一个算法执行效率与数据规模增长的变化趋势,所以不管常量的执行时间多大,我们都可以忽略掉。因为它本身对增长趋势并没有影响。
那第二段代码和第三段代码的时间复杂度是多少呢?答案是O(n)和O(n 2 ) >代表n的2次方
综合这三段代码的时间复杂度,我们取其中最大的量级。所以,整段代码的时间复杂度就为O(n *n )。也就是说:总的时间复杂度就等于量级最大的那段代码的时间复杂度。那我们将这个规律抽象成公式就是:如果 T1(n)=O(f(n)) , T2(n)=O(g(n)) ;那么 T(n)=T1(n)+T2(n)=max(O(f(n)), O(g(n))) =O(max(f(n), g(n)))。

1.2.3 乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积

如果 T1(n)=O(f(n)) , T2(n)=O(g(n)) ;那么 T(n)=T1(n)*T2(n)=O(f(n))*O(g(n))=O(f(n)*g(n)).
落实到具体的代码上,我们可以把乘法法则看成是嵌套循环,我举个例子给你解释一下

int test2(int n) {
        int ret = 0;
        int i = 1;
        for (; i < n; ++i) {
            ret = ret + f(i);
        }
    }
    
    int f(int n) {
        int sum = 0;
        int i = 1;
        for (; i < n; ++i) {
            sum = sum + i;
        }
        return sum;
    }

我们单独看 cal() 函数。假设 f() 只是一个普通的操作,那第 4 ~ 6 行的时间复杂度就是, T1(n) = O(n) 。但 f() 函数本身不是一个简单的操作,它的时间复杂度是 T2(n) =O(n),所以,整个cal()函数的时间复杂度就是,T(n) = T1(n) * T2(n) = O(n*n) = O(n 2 )表示n的2次方。

1.3 几种常见时间复杂度实例

在这里插入图片描述
粗略地分为两类,多项式量级和非多项式量级。其中,非多项式量级只有两个:O(2 n )和O(n!)。
当数据规模 n 越来越大时,非多项式量级算法的执行时间会急剧增加,求解问题的执行时间会无限增长。所以,非多项式时间复杂度的算法其实是非常低效的算法。因此,关于NP时间复杂度我就不展开讲了。我们主要来看几种常见的多项式时间复杂度。

1.3.1 O(1)

首先你必须明确一个概念, O(1) 只是常量级时间复杂度的一种表示方法,并不是指只执行了一行代码。比如这段代码,即便有 3 行,它的时间复杂度也是 O(1 ),而不是 O(3) 。

int i = 8;
int j = 6;
int sum = i + j;

只要代码的执行时间不随n的增大而增长,这样代码的时间复杂度我们都记作O(1)。或者说,一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行的代码,其时间复杂度也是Ο(1)。

1.3.2 O(logn)、O(nlogn)

对数阶时间复杂度非常常见,同时也是最难分析的一种时间复杂度。我通过一个例子来说明一下。

i=1;
while (i <= n) {
i = i * 2;
}

根据我们前面讲的复杂度分析方法,第三行代码是循环执行次数最多的。所以,我们只要能计算出这行代码被执行了多少次,就能知道整段代码的时间复杂度。
从代码中可以看出,变量 i 的值从 1 开始取,每循环一次就乘以 2 。当大于 n 时,循环结束。还记得我们高中学过的等比数列吗?实际上,变量 i 的取值就是一个等比数列。如果我把它一个一个列出来,就应该是这个样子的:
在这里插入图片描述
我们只要知道x值是多少,就知道这行代码执行的次数了。通过2 x =n求解x这个问题我们想高中应该就学过了,我就不多说了。x=log 2 n,所以,这段代码的时间复杂度就是O(log 2 n)。
现在,我把代码稍微改下,你再看看,这段代码的时间复杂度是多少?

i=1;
while (i <= n) {
i = i * 3;
}

在这里插入图片描述

1.3.3. O(m+n)、O(m*n)

int cal(int m, int n) {
int sum_1 = 0;
int i = 1;
for (; i < m; ++i) {
sum_1 = sum_1 + i;
}
int sum_2 = 0;
int j = 1;
for (; j < n; ++j) {
sum_2 = sum_2 + j;
}
return sum_1 + sum_2;
}

从代码中可以看出, m 和 n 是表示两个数据规模。我们无法事先评估 m 和 n 谁的量级大,所以我们在表示复杂度的时候,就不能简单地利用加法法则,省略掉其中一个。所以,上面代码的时间复杂度就是 O(m+n) 。
针对这种情况,原来的加法法则就不正确了,我们需要将加法规则改为: T1(m) + T2(n) = O(f(m) + g(n)) 。但是乘法法则继续有效: T1(m)*T2(n) = O(f(m) * f(n)) 。

1.4 空间复杂度分析

时间复杂度的全称是渐进时间复杂度,表示算法的执行时间与数据规模之间的增长关系。类比一下,空间复杂度全称就是渐进空间复杂度(asymptotic space complexity),表示算法的存储空间与数据规模之间的增长关系。

   void test3(int n) {
        int i = 0;
        int[] a = new int[n];
        for (i; i < n; ++i) {
            a[i] = i * i;
        }
        for (i = n - 1; i >= 0; --i) {
            System.out.println(a[i]);
        }
    }

跟时间复杂度分析一样,我们可以看到,第 2 行代码中,我们申请了一个空间存储变量 i ,但是它是常量阶的,跟数据规模 n 没有关系,所以我们可以忽略。第 3 行申请了一个大小为 n 的 int 类型数组,除此之外,剩下的代码都没有占用更多的空间,所以整段代码的空间复杂度就是 O(n) 。
我们常见的空间复杂度就是O(1)、O(n)、O(n 2 ),像O(logn)、O(nlogn)这样的对数阶复杂度平时都用不到。而且,空间复杂度分析比时间复杂度分析要简单很多。所以,对于空间复杂度,掌握刚我说的这些内容已经足够了。
在这里插入图片描述
复杂度也叫渐进复杂度,包括时间复杂度和空间复杂度,用来分析算法执行效率与数据规模之间的增长关系,可以粗略地表示,越高阶复杂度的算法,执行效率越低。常见的复杂度并不多,从低阶到高阶有:O(1)、O(logn)、O(n)、O(nlogn)、O(n 2 )。

1.5 浅析最好、最坏、平均、均摊时间复杂度[了解]

int find(int[] array, int n, int x) {
        int i = 0;
        int pos = -1;
        for (; i < n; ++i) {
            if (array[i] == x) {
                pos = i;
                break;
            }
        }
        return pos;
    }

为了表示代码在不同情况下的不同时间复杂度,我们需要引入三个概念:最好情况时间复杂度、最坏情况时间复杂度和平均情况时间复杂度。
最好情况时间复杂度:
如果数组中第一个元素正好是要查找的变量 x ,那就不需要继续遍历剩下的 n-1 个数据了,那时间复杂度就是 O(1) 。
最坏情况时间复杂度:
但如果数组中不存在变量 x ,那我们就需要把整个数组都遍历一遍,时间复杂度就成了 O(n) 。
平均时间复杂度:
加权平均时间复杂度 O(n)
要查找的变量x在数组中的位置,有n+1种情况:在数组的0~n-1位置中和不在数组中。我们把每种情况下,查找需要遍历的元素个数累加起来,然后再除以n+1,就可以得到需要遍历的元素个数的平均值,即:
在这里插入图片描述
均摊时间复杂度:
对一个数据结构进行一组连续操作中,大部分情况下时间复杂度都很低,只有个别情况下时间复杂度比较高,而且这些操作之间存在前后连贯的时序关系,这个时候,我们就可以将这一组操作放在一块儿分析,看是否能将较高时间复杂度那次操作的耗时,平摊到其他那些时间复杂度比较低的操作上。而且,在能够应用均摊时间复杂度分析的场合,一般均摊时间复杂度就等于最好情况时间复杂度。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值