Leetcode_001(Array)

本文详细解析了经典的“两数之和”问题的各种解法,包括暴力解法、双次Hash解法、单次Hash解法及其变种,并对比了它们的时间与空间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原题:两数之和

自解:

class SolutionMy {
    public:
        vector<int> twoSum(vector<int>& nums, int target) {
            vector<int> pp(2);
            int num = nums.size();
            int pt1, pt2;
            pt1 = 0;
            pt2 = 1;
            while (pt1 != num - 1){
                if (nums[pt1] + nums[pt2] == target){
                    break;
                } else{
                    if(pt2 != num - 1){
                        pt2++;
                    } else{
                        pt1++;
                        pt2 = pt1 + 1;
                    }
                }
            }//while
            pp[0] = pt1;
            pp[1] = pt2;
            return pp;
        }
};

双次Hash:

class SolutionTwoHash {
public:
    vector<int> twoSum(vector<int>& nums, int target) {
        map<int,int> a;//建立hash表存放数组元素
        vector<int> b(2,-1);//存放结果
        for(int i=0;i<nums.size();i++)
            a.insert(map<int,int>::value_type(nums[i],i));
        for(int i=0;i<nums.size();i++)
        {
            if(a.count(target-nums[i])>0&&(a[target-nums[i]]!=i))
                //判断是否找到目标元素且目标元素不能是本身
            {
                b[0]=i;
                b[1]=a[target-nums[i]];
                break;
            }
        }
        return b;
    };
};

单次Hash:

class SolutionOneHash {
public:
    vector<int> twoSum(vector<int>& nums, int target) {
        map<int,int> a;//提供一对一的hash
        vector<int> b(2,-1);//用来承载结果,初始化一个大小为2,值为-1的容器b
        for(int i=0;i<nums.size();i++)
        {
            if(a.count(target-nums[i])>0)
            {
                b[0]=a[target-nums[i]];
                b[1]=i;
                break;
            }
            a[nums[i]]=i;//反过来放入map中,用来获取结果下标
        }
        return b;
    };
};

短解单次Hash:

class SolutionShort {
public:
    map<int,int> mp1;
    vector<int> twoSum(vector<int>& nums, int target) {
        for( int i=0;i<nums.size();i++ ){
            if( mp1.count(target-nums[i]) ) return vector<int>{i,mp1[target-nums[i]]};
            else mp1[nums[i]]=i;
        }
        return vector<int>();
    }
};

理论最佳Hash:

class SolutionTheBest {
public:
    vector<int> twoSum(vector<int>& nums, int target) {
        map<int ,int>mymap;
        for (int i = 0; i < nums.size(); ++i) {
            int another = target - nums[i];
            auto iter = mymap.find(another);
            if ( iter != mymap.end()){
                return vector<int>{mymap[another], i};
            }
            mymap[nums[i]] = i;
        }
        return vector<int>{-1,-1};
    }//TwoSum
};

反思

  1. 自解
    没有利用Hash,即近似于暴力解,不过由于循环特性的问题,第k次循环内只需要进行 n-k 次判断,即时间复杂度不是n^2,空间复杂度就是1 。由于原数组未排序,我们只能考虑所有情况,即集合中任意取两不同位置元素。
  2. 双次Hash
    双次Hash运行时间大大减少了,但开辟的空间较多,需要更多的内存。逻辑是创建map使得nums内部元素成为键,而其角标为值,这样初始化创建的map。再进行最多n次循环得到结果。这里利用了map的count方法,即寻找其对应键,找不到就返回0,找到返回1 。还要判断是否为本身,&&判断。
  3. 单次Hash
    双次Hash尽管一劳永逸,但是有时候我们没有必要初始化所有元素,即很有可能在遍历到最后一个元素前我们的程序就找到了答案。因此可以添加一个元素,调用一次hash.count()。可以对时空复杂度进行折中。不过返回来思考,发现单次Hash也并没有简单多少,map.count()方法的调用也需要时间,若答案是0和n-1,则复杂度就拉满了,时空都没有节约。单次Hash的优点在于降低了下限,即最快第一次就找到答案,而不需要初始化。单次和双次的最大时间复杂度和空间复杂度是一样的。
  4. 短单次Hash
    单次Hash的不同写法,更加简洁。
  5. 理论最佳Hash:
    单次Hash的另外一种写法,没有特殊性。只是利用了迭代器的find方法实现了count很灵活。

最后有个小疑问,Hash的单次和双次无非是Count调用次数和怎样初始化map的折中,添加元素的方式决定了每次更新map成员后都要再次调用count,单次count用时间换取了不必要的空间,可行。

2022年1月17日17:04:45
今天开始每天都要进行一点,以此打卡

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值