基于Python的自定义随机森林(Random Forest)分类器

      本文介绍了一个基于Python的自定义随机森林(Random Forest)分类器,并将其应用于MNIST手写数字识别任务。以下从算法原理、核心代码和核心用途三个方面详细说明:

1.算法原理概述​

       随机森林是一种基于集成学习(Ensemble Learning)的监督学习算法,核心思想是通过构建多棵独立的决策树,并综合它们的预测结果(分类任务采用多数投票,回归任务采用均值)来提升模型的泛化能力和准确性。其关键机制包括:

(1)自助采样(Bootstrap Sampling):从原始数据集中有放回地随机抽取样本,生成多个不同的训练子集(每棵树使用不同的子集)。

(2)特征随机选择:每棵树训练时仅使用随机选择的特征子集(而非全部特征),降低树之间的相关性。

(3)多数投票(Majority Voting):分类任务中,多棵树的预测结果通过投票决定最终类别;回归任务中取均值。

2.数据加载与预处理​

       本节准备MNIST数据集并划分为训练集和测试集。

MNIST数据集:包含6万张训练图和1万张测试图,每张图是28×28像素的手写数字,展平为784维特征向量,标签为对应的数字(0-9)。

# 数据加载与预处理
data = pd.read_csv('mnist_data.csv')
X = data.drop(columns=['label'])
y = data['label']

# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42
)

3.自定义随机森林类(CustomRandomForest类)​

       本节介绍了CustomRandomForest类,该类封装了随机森林的核心逻辑,包括数据采样、特征选择、决策树训练和预测。

(1) 初始化方法(__init__函数)

       __init__函数主要设置随机森林的超参数,并初始化存储结构。

def __init__(self, n_estimators=100, max_depth=5, max_features='sqrt', bootstrap=True):
    self.n_estimators = n_estimators       # 决策树数量(森林规模)
    self.max_depth = max_depth             # 每棵树的最大深度(限制复杂度,防过拟合)
    self.max_features = max_features       # 每棵树随机选择的特征数(如√(总特征数))
    self.bootstrap = bootstrap             # 是否使用自助采样(默认开启)
    self.trees = []                        # 存储训练好的决策树及对应特征子集
    self.feature_indi
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值