本文介绍了一个基于Python的自定义随机森林(Random Forest)分类器,并将其应用于MNIST手写数字识别任务。以下从算法原理、核心代码和核心用途三个方面详细说明:
1.算法原理概述
随机森林是一种基于集成学习(Ensemble Learning)的监督学习算法,核心思想是通过构建多棵独立的决策树,并综合它们的预测结果(分类任务采用多数投票,回归任务采用均值)来提升模型的泛化能力和准确性。其关键机制包括:
(1)自助采样(Bootstrap Sampling):从原始数据集中有放回地随机抽取样本,生成多个不同的训练子集(每棵树使用不同的子集)。
(2)特征随机选择:每棵树训练时仅使用随机选择的特征子集(而非全部特征),降低树之间的相关性。
(3)多数投票(Majority Voting):分类任务中,多棵树的预测结果通过投票决定最终类别;回归任务中取均值。
2.数据加载与预处理
本节准备MNIST数据集并划分为训练集和测试集。
MNIST数据集:包含6万张训练图和1万张测试图,每张图是28×28像素的手写数字,展平为784维特征向量,标签为对应的数字(0-9)。
# 数据加载与预处理
data = pd.read_csv('mnist_data.csv')
X = data.drop(columns=['label'])
y = data['label']
# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42
)
3.自定义随机森林类(CustomRandomForest类)
本节介绍了CustomRandomForest类,该类封装了随机森林的核心逻辑,包括数据采样、特征选择、决策树训练和预测。
(1) 初始化方法(__init__函数)
__init__函数主要设置随机森林的超参数,并初始化存储结构。
def __init__(self, n_estimators=100, max_depth=5, max_features='sqrt', bootstrap=True):
self.n_estimators = n_estimators # 决策树数量(森林规模)
self.max_depth = max_depth # 每棵树的最大深度(限制复杂度,防过拟合)
self.max_features = max_features # 每棵树随机选择的特征数(如√(总特征数))
self.bootstrap = bootstrap # 是否使用自助采样(默认开启)
self.trees = [] # 存储训练好的决策树及对应特征子集
self.feature_indi