为了判断实时监控中物体或人体是否移动,并计算其移动距离,可以使用以下方法:
1、基于深度学习的方法
原理很简单,使用目标检测算法YOLO、Faster R-CNN等检测物体,计算每一帧检测框的中心点,使用中心点距离代表计算帧间距离。
这里的程序为计算人脸移动距离,使用YOLOv8-Face作为目标检测器。
import cv2
import numpy as np
from ultralytics import YOLO
# 加载 YOLOv8 模型
model = YOLO('yolov8n-face.pt') # 替换为你的模型路径
# 视频读取
cap = cv2.VideoCapture('videos/test3.mp4')
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)
out = cv2.VideoWriter('output_test3.mp4', cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
# 初始化变量
first_frame = True
x_center_0, y_center_0 = None, None
target_class = 0 # 要检测的类别
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# 目标检测
results = model(frame)
for result in results:
# 提取目标的边界框和中心点
for box in result.boxes.data.tolist():
x1, y1, x2, y2, score, class_id = box
if class_id == target_class and score > 0.5: # 筛选特定类别和置信度
x_center = (x1 + x2) / 2
y_center = (y1 + y2) / 2
# 记录第一帧的中心点
if first_frame:
x_center_0, y_center_0 = x_center, y_center
first_frame = False
# 计算位移
dx = x_center - x_center_0
dy = y_center - y_center_0
displacement = np.sqrt(dx ** 2 + dy ** 2)
# 绘制边界框和中心点
cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (255, 0, 0), 2)
cv2.circle(frame,