视频帧序列中物体位移的计算-OpenCV

为了判断实时监控中物体或人体是否移动,并计算其移动距离,可以使用以下方法:

1、基于深度学习的方法

原理很简单,使用目标检测算法YOLO、Faster R-CNN等检测物体,计算每一帧检测框的中心点,使用中心点距离代表计算帧间距离。

这里的程序为计算人脸移动距离,使用YOLOv8-Face作为目标检测器。

import cv2
import numpy as np
from ultralytics import YOLO

# 加载 YOLOv8 模型
model = YOLO('yolov8n-face.pt')  # 替换为你的模型路径

# 视频读取
cap = cv2.VideoCapture('videos/test3.mp4')
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)
out = cv2.VideoWriter('output_test3.mp4', cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))

# 初始化变量
first_frame = True
x_center_0, y_center_0 = None, None
target_class = 0  # 要检测的类别

while cap.isOpened():
    ret, frame = cap.read()
    if not ret:
        break

    # 目标检测
    results = model(frame)
    for result in results:
        # 提取目标的边界框和中心点
        for box in result.boxes.data.tolist():
            x1, y1, x2, y2, score, class_id = box
            if class_id == target_class and score > 0.5:  # 筛选特定类别和置信度
                x_center = (x1 + x2) / 2
                y_center = (y1 + y2) / 2

                # 记录第一帧的中心点
                if first_frame:
                    x_center_0, y_center_0 = x_center, y_center
                    first_frame = False

                # 计算位移
                dx = x_center - x_center_0
                dy = y_center - y_center_0
                displacement = np.sqrt(dx ** 2 + dy ** 2)

                # 绘制边界框和中心点
                cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (255, 0, 0), 2)
                cv2.circle(frame,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值