Ubuntu 安装 cuDNN(附测试)

本教程详细介绍了在Ubuntu16.04系统中安装cuDNN的过程,包括两种安装方法:.tgz文件安装与.deb文件安装。同时,提供了测试cuDNN是否正确安装的方法,确保深度学习框架如TensorFlow-gpu能够顺利运行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

为深度学习所用,博主预想在Ubuntu16.04上安装 显卡驱动 + CUDA + cuDNN + Tensorflow-gpu + Keras + PyCharm,参考了众多资料,最终成功将所有软件安装完毕,且能成功运行使用。该篇博客介绍了cuDNN的安装教程,亦可通过下方链接查看其他步骤的安装教程。

前期说明及版本对照

换源及安装显卡驱动

安装 CUDA(附测试)

安装 cuDNN(附测试)

安装 Tensorflow-gpu 与 Keras(附测试)

设置 PyCharm

安装教程完整版

安装 cuDNN

可在cuDNN的官网上下载对应版本的cuDNN安装包,官网网址:

### 安装 CuDNN on Ubuntu 的逐步指南 为了在Ubuntu上成功安装CuDNN,需遵循一系列特定步骤来确保兼容性和性能优化。首先确认已安装NVIDIA驱动程序以及CUDA Toolkit版本匹配所要安装CuDNN版本[^3]。 #### 验证 CUDA 版本 通过命令`nvcc --version`可以查看当前系统中的CUDA编译器版本,以此决定适合的CuDNN版本。这一步骤对于后续操作至关重要,因为不同版本间的兼容性可能影响到最终应用的表现效果[^4]。 ```bash $ nvcc --version ``` #### 下载 CuDNN 库文件 访问[NVIDIA官方网站](https://developer.nvidia.com/cudnn),注册并登录账户后下载对应于已安装CUDA版本的CuDNN库压缩包。注意选择适用于Linux系统的tar格式文件进行下载[^5]。 #### 解压与复制文件至指定路径 解压下载好的cuDNN tarball文件,并将其内的头文件(`*.h`)、库文件(`lib*`)分别拷贝到对应的CUDA目录下: ```bash $ tar -xzvf cudnn-<version>-linux-x64-v8.0.tgz $ sudo cp cuda/include/cudnn*.h /usr/local/cuda/include/ $ sudo cp cuda/lib64/* /usr/local/cuda/lib64/ ``` 完成上述动作之后记得执行环境变量更新指令使更改生效: ```bash $ ldconfig ``` #### 测试安装是否成功 最后可以通过编写简单的测试代码验证CuDNN是否被正确加载和初始化。创建一个新的C++源码文件test_cudnn.cpp,在其中调用cudnnCreate()函数尝试建立句柄对象;如果返回状态为CUDNN_STATUS_SUCCESS,则说明配置无误[^6]。 ```cpp #include <iostream> #include <cudnn.h> int main(){ cudnnHandle_t handle; cudnnStatus_t status = cudnnCreate(&handle); if (status != CUDNN_STATUS_SUCCESS){ std::cerr << "Failed to create cuDNN context." << std::endl; return 1; } std::cout << "Successfully created cuDNN context!" << std::endl; // Clean up resources before exit. cudnnDestroy(handle); return 0; } ``` 编译运行这段小程序即可得知结果。若有任何错误提示,请仔细检查之前的每一步设置过程直至解决问题为止。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值