图像分类在乳腺癌检测中的应用

本文探讨了卷积神经网络在乳腺癌检测中的应用,指出医学成像中的域差异对模型性能的影响。通过使用域适应技术,模型在不同医疗机构中的癌症检测准确性得到提高,但仍有提升空间,未来工作将探索更多数据和更精细的图像处理方法以提高模型准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达


01.概述

癌症是人类主要的死亡原因之一,仅次于心脏病[A]。美国2017年近60万人死于癌症。乳腺癌在癌症排行榜中排名第二,也是女性最常见的疾病。组织学检查通常是患者癌症治疗过程中的转折点。如果常规的乳房X射线检测到异常肿块,则将进行活检以便进一步确诊。但是,复查和评估活检玻片所需的时间很长,可能会给患者带来巨大的压力。一种能够识别癌组织并减少误诊率的有效算法可使患者更早开始治疗并改善患者预后效果。

卷积神经网络(CNN)已经尝试应用于癌症检查,但是基于CNN模型的共同缺点是不稳定性以及对训练数据的依赖。部署模型时,假设训练数据和测试数据是从同一分布中提取的。这可能是医学成像中的一个问题,在这些医学成像中,诸如相机设置或化学药品染色的年龄之类的元素在设施和医院之间会有所不同,并且会影响图像的颜色。这些变化对人眼来说可能并不明显,但是它们可能会影响CNN的重要特征并导致模型性能下降。因此,重要的是要开发一种能够适应域之间差异的鲁棒算法。

过去已经举行了数项竞赛,以开发组织学幻灯片中的癌症检测算法,例如ICIAR系列(BACH)[C],乳腺癌组织病理学数据库(BreakHist)[D]和Kaggle组织病理学癌症检测[E] 。在此项目中,我们将探索如何使用域适应来开发更强大的乳腺癌分类模型,以便将模型部署到多个医疗机构中。

02.背景

“癌症是人体内不受控制异常生长的细胞。当人体的控制机制不工作的时候,癌症就会发展。” [G] 在美国,预计八分之一的女性都会患乳腺癌。到2020年,预计将识别出300,000例乳腺癌病例,结果38人中将有1人死亡。

组织学用于评估患者的身体组织并鉴定癌细胞。在评估之前,将组织样本染色以突出显示组织的不同部分。苏木精和曙红是常见的染色剂,因为它们可以有效地突出异常细胞团。苏木素是一个碱基,与嗜碱性结构(如细胞核)结合,将它们染成紫色,而曙红将嗜酸性结构(如细胞质)染成粉红色[H]。理想中,不同的颜色和结构足以识别组织异常。但是,染色组织的确切阴影可能会根据变量(例如年龄,染色化学物质的浓度,湿度和样本大小)而变化(图1)。这些颜色变化可能会使CNN模型分辨不清。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值