题目:Identity-Guided Collaborative Learning for Cloth-Changing Person Reidentification
基于身份引导协同学习的更换衣物行人再识别
作者:Zan Gao; Shengxun Wei; Weili Guan; Lei Zhu; Meng Wang; Shengyong Chen
摘要
更换衣物行人再识别 (ReID) 是一个新兴的研究课题,旨在解决由于更换衣物和行人视角/姿势变化导致的特征变化问题。虽然通过引入额外的信息(例如人类轮廓素描信息、人类身体关键点和3D人类信息)取得了显著进展,但更换衣物行人再识别仍然具有挑战性,因为行人的外观表示随时可能发生变化。此外,人类语义信息和行人身份信息尚未得到充分利用。为了解决这些问题,我们提出了一种新颖的基于身份引导的协同学习方案 (IGCL) 用于更换衣物行人再识别,其中人类语义被有效利用且身份保持不变以引导协同学习。首先,我们设计了一种新的衣物注意力退化流,以合理减少衣物信息带来的干扰,其中使用了衣物注意力和中层协同学习。其次,我们提出了一种人类语义注意力和身体拼图流,以突出人类语义信息并模拟同一身份的不同姿势。这样,提取的特征不仅关注与背景无关的人类语义信息,还适合行人姿势的变化。此外,我们还提出了一种行人身份增强流,以增强身份的重要性并提取更有利的身份鲁棒特征。