TPAMI 2024 | 单目深度估计:全面综述

题目:Monocular Depth Estimation: A Thorough Review

单目深度估计:全面综述

作者:Vasileios Arampatzakis; George Pavlidis; Nikolaos Mitianoudis; Nikos Papamarkos


摘要

在计算机视觉领域,对二维图像中深度的估计是一个具有挑战性的主题。这是一个长期被深入研究且定义不明确的问题,一直是密集研究的焦点。本文是对这一主题的深入回顾,呈现了两个方面:一方面考虑人类深度感知的机制,另一方面包括各种深度学习方法。这些方法以紧凑和结构化的方式呈现,概述了主题,并根据近十年的研究线索对方法进行了分类。尽管在这一主题上取得了显著进展,但似乎没有任何与人类深度感知及其潜在益处的联系。

关键词

  • 人工智能
  • 计算机视觉
  • 深度学习
  • 深度估计
  • 图像处理
  • 机器学习
  • 单目深度估计

第一部分 引言

场景的空间结构识别是机器视觉感知中的一个基本问题,通常被称为深度估计或重建。当一个三维(3D)场景投影到一个平面上时,就会产生一个二维(2D)图像。深度估计的目标是解决逆问题,即重构由于投影而丢失的与观察位置相对应

### TPAMI 2024 Domain Generalization Papers Research Domain generalization aims to develop machine learning models that can perform well on unseen domains without requiring any data from these target domains during training. This area has seen significant advancements, especially concerning theoretical foundations and practical applications. In the context of TPAMI 2024 publications, several key themes emerge regarding domain generalization: #### Theoretical Foundations Research focuses on improving model robustness across different environments or conditions not observed during training. Techniques such as invariant risk minimization aim at identifying features that are causally related to outcomes rather than spuriously correlated ones[^1]. These methods ensure better performance when applied to new scenarios where distribution shifts might occur. #### Practical Applications Studies explore various application areas including but not limited to robotics, computer vision tasks like object recognition under varying lighting/angles, medical imaging analysis using diverse patient populations' datasets, etc.[^3]. For instance, one study investigates how pre-trained deep architectures could be fine-tuned effectively for specific downstream tasks while maintaining strong out-of-distribution accuracy through self-supervised learning strategies combined with transfer learning principles[^4]. Another notable work examines leveraging multi-source adaptation frameworks which integrate information from multiple source domains into a unified representation space facilitating improved zero-shot generalizability over single-source approaches alone[^5]. ```python import torch.nn as nn class DomainGeneralizationModel(nn.Module): def __init__(self): super(DomainGeneralizationModel, self).__init__() # Define layers here def forward(self, x): # Forward pass implementation return output ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值