TPAMI 2024 | DeepNet: 将Transformer扩展到1000层

题目:DeepNet: Scaling Transformers to 1,000 Layers

DeepNet: 将Transformer扩展到1000层

作者:Hongyu Wang,Shuming Ma,Li Dong,Shaohan Huang,Dongdong Zhang,Furu Wei


摘要 —— 在本文中,我们提出了一种简单而有效的方法来稳定极深的Transformer。具体来说,我们引入了一种新的归一化函数(DEEPNORM),用于修改Transformer中的残差连接,并伴随着理论上推导出的初始化。深入的理论分析表明,模型更新可以以稳定的方式被限制。所提出的方法结合了Post-LN的良好性能和Pre-LN的稳定训练这两个最佳方面,使DEEPNORM成为首选的替代方案。我们成功地将Transformer扩展到1000层(即2500个注意力和前馈网络子层),这比之前的深Transformer深一个数量级。广泛的实验表明,DEEPNET在各种基准测试中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值