论文信息
题目:Tensor Coupled Learning of Incomplete Longitudinal Features and Labels for Clinical Score Regression
张量耦合学习不完整纵向特征和标签用于临床评分回归
作者:Qing Xiao; Guiying Liu; Qianjin Feng; Yu Zhang; Zhenyuan Ning
论文创新点
-
1 张量耦合学习范式(TCL): 本研究提出了一种新的张量耦合学习(TCL)范式,用于处理不完整的纵向特征和标签,以进行临床评分回归。这种方法通过耦合特征和标签张量,可以同时处理两者的不完整性,提高了数据利用效率,并增强了模型的泛化能力。
-
2 动态正则化器设计: TCL框架中设计了一种动态正则化器,用于自适应地选择和突出重要属性。这种动态正则化器能够在迭代过程中动态更新权重,有助于消除属性冗余,并促进张量之间的耦合,从而提高了模型的性能。
-
3