TPAMI 2024 | 张量耦合学习不完整纵向特征和标签用于临床评分回归(一)

论文信息

题目:Tensor Coupled Learning of Incomplete Longitudinal Features and Labels for Clinical Score Regression
张量耦合学习不完整纵向特征和标签用于临床评分回归
作者:Qing Xiao; Guiying Liu; Qianjin Feng; Yu Zhang; Zhenyuan Ning

论文创新点

  • 1 张量耦合学习范式(TCL): 本研究提出了一种新的张量耦合学习(TCL)范式,用于处理不完整的纵向特征和标签,以进行临床评分回归。这种方法通过耦合特征和标签张量,可以同时处理两者的不完整性,提高了数据利用效率,并增强了模型的泛化能力。

  • 2 动态正则化器设计: TCL框架中设计了一种动态正则化器,用于自适应地选择和突出重要属性。这种动态正则化器能够在迭代过程中动态更新权重,有助于消除属性冗余,并促进张量之间的耦合,从而提高了模型的性能。

  • 3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值