MICCAI‘23 | 基于Transformer的双域网络用于少视图专用心脏SPECT图像重建

论文信息

题目:Transformer-Based Dual-Domain Network for Few-View Dedicated Cardiac SPECT Image Reconstructions
基于Transformer的双域网络用于少视图专用心脏SPECT图像重建
作者:Huidong Xie, Bo Zhou, Xiongchao Chen, Xueqi Guo, Stephanie Thorn, Yi-Hwa Liu, Ge Wang, Albert Sinusas, Chi Liu

论文创新点

  1. 提出了TIP-Net网络:作者提出了一种新颖的基于3D变压器的双域网络(TIP-Net),用于高质量的3D心脏SPECT图像重建。该网络通过结合投影域和图像域的信息,显著提高了少视图心脏SPECT图像的重建质量。
  2. 直接从投影数据重建图像:TIP-Net的一个重要创
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值