论文信息
题目:Fine-Grained Visual Text Prompting
细粒度视觉文本提示
作者:Lingfeng Yang; Xiang Li; Yueze Wang; Xinlong Wang; Jian Yang
论文创新点
-
细粒度视觉提示(FGVP):提出了使用细粒度语义掩码(如模糊反向掩码)作为视觉提示,显著优于传统的粗略标记(如彩色框或圆圈)。这种方法能够精确定位目标,减少背景干扰,同时保留目标与其背景的空间信息。
-
一致性增强文本提示(CETP):设计了一种文本提示策略,通过将视觉提示的属性(如模糊背景)显式地合并到文本输入中,增强了图像与文本之间的一致性。例如,对于模糊背景的图像,文本提示会添加“with blur background”的后缀。
-
零样本分类架构:构建了两种零样本分类架构:一种使用预训练检测器的框作为先验提议,另一种仅使用图像输入,通过Segment Anything Model (SAM)生成细粒度掩码,适用于没有先验框提议的场景。
-
多模态提示的系统性探