论文信息
题目:Towards Training-Free Open-World Segmentation via Image Prompt Foundation Models
基于图像提示基础模型的免训练开放世界分割研究
作者:Lv Tang, Peng-Tao Jiang, Haoke Xiao, Bo Li
源码:https://github.com/luckybird1994/IPSeg
论文创新点
- 提出免训练的开放世界分割框架:论文提出了基于基础模型的免训练开放世界对象分割框架IPSeg,利用具有清晰目标对象的图像提示从基础模型中查询通用对象表示,为解决开放世界分割问题提供了新视角。
- 设计简单有效的框架结构:IPSeg框架包含特征提取、特征交互和分割三个有效组件。通过两个分支分别提取提示图像和输入图像的特征