IJCV 2024 | 基于图像提示基础模型的免训练开放世界分割研究

论文信息

题目:Towards Training-Free Open-World Segmentation via Image Prompt Foundation Models
基于图像提示基础模型的免训练开放世界分割研究
作者:Lv Tang, Peng-Tao Jiang, Haoke Xiao, Bo Li
源码:https://github.com/luckybird1994/IPSeg

论文创新点

  1. 提出免训练的开放世界分割框架:论文提出了基于基础模型的免训练开放世界对象分割框架IPSeg,利用具有清晰目标对象的图像提示从基础模型中查询通用对象表示,为解决开放世界分割问题提供了新视角。
  2. 设计简单有效的框架结构:IPSeg框架包含特征提取、特征交互和分割三个有效组件。通过两个分支分别提取提示图像和输入图像的特征
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值