论文信息
题目:Federated Learning for Generalization, Robustness, Fairness: A Survey and Benchmark
联邦学习的泛化性、鲁棒性和公平性:综述与基准测试
作者:Wenke Huang, Mang Ye, Zekun Shi, Guancheng Wan, He Li, Bo Du, Qiang Yang
源码链接:https://github.com/WenkeHuang/MarsFL
论文创新点
- 首次全面综述联邦学习泛化、鲁棒和公平性研究,涵盖数百篇论文。
- 按任务设置分类现有方法,并深入分析优缺点。
- 在多种场景下对方法基准测试,用多指标评估,还探讨未来方向。
摘要
联邦学习已成为一种在不同参与方之间进行隐私保护协作的