TPAMI 2024 | 联邦学习的泛化性、鲁棒性和公平性:综述与基准测试

论文信息

题目:Federated Learning for Generalization, Robustness, Fairness: A Survey and Benchmark
联邦学习的泛化性、鲁棒性和公平性:综述与基准测试
作者:Wenke Huang, Mang Ye, Zekun Shi, Guancheng Wan, He Li, Bo Du, Qiang Yang
源码链接:https://github.com/WenkeHuang/MarsFL

论文创新点

  1. 首次全面综述联邦学习泛化、鲁棒和公平性研究,涵盖数百篇论文。
  2. 按任务设置分类现有方法,并深入分析优缺点。
  3. 在多种场景下对方法基准测试,用多指标评估,还探讨未来方向。

摘要

联邦学习已成为一种在不同参与方之间进行隐私保护协作的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值