论文信息
题目:A Denoised Mean Teacher for Domain Adaptive Point Cloud Registration
用于域自适应点云配准的去噪平均教师模型
作者:Alexander Bigalke, Mattias P. Heinrich
源码:https://github.com/multimodallearning/denoised_mt_pcd_reg
论文创新点
- 提出基于Chamfer距离的伪标签过滤策略:为防止教师模型的有害监督,论文提出通过衡量固定点云和变形后的移动点云之间的相似性/距离,即Chamfer距离,来评估学生和教师配准的质量。只有当教师的配准优于学生时,才将其作为监督提供给学生,从而改进了标准教师模型及其不确定性感知扩展。
- 设计教师动态合成无噪声监督的输入对方法:提出一种全新的教师范式,教师通过预测的变形动态合成新的训练对,为学生提供具有精确已知位移标签的输入对。这些输入对与静态手工合成变形不同,其变形基于教