MICCAI 2023 | 用于域自适应点云配准的去噪平均教师模型

论文信息

题目:A Denoised Mean Teacher for Domain Adaptive Point Cloud Registration
用于域自适应点云配准的去噪平均教师模型
作者:Alexander Bigalke, Mattias P. Heinrich
源码:https://github.com/multimodallearning/denoised_mt_pcd_reg

论文创新点

  1. 提出基于Chamfer距离的伪标签过滤策略:为防止教师模型的有害监督,论文提出通过衡量固定点云和变形后的移动点云之间的相似性/距离,即Chamfer距离,来评估学生和教师配准的质量。只有当教师的配准优于学生时,才将其作为监督提供给学生,从而改进了标准教师模型及其不确定性感知扩展。
  2. 设计教师动态合成无噪声监督的输入对方法:提出一种全新的教师范式,教师通过预测的变形动态合成新的训练对,为学生提供具有精确已知位移标签的输入对。这些输入对与静态手工合成变形不同,其变形基于教
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值