论文信息
题目:Locality-Aware Graph Rewiring In GNNS
图神经网络中的局部感知图重布线
作者:Federico Barbero、Ameya Velingker、Amin Saberi、Michael Bronstein、Francesco Di Giovanni
论文创新点
- 提出通用框架:提出一种通用的图重布线框架,通过局部约束的顺序重布线,在输入图和连接性更好的图之间进行插值,满足减少过压缩、保持局部性和稀疏性的要求。
- 设计局部感知序列重布线:提出局部感知序列重布线(LASER)框架,选择最短路径距离作为局部性度量,通过优先添加具有低连接性分数的边,在保持图的稀疏性的同时,减轻过压缩问题。
- 建立与多关系GNN的联系:将图重布线与多关系GNN和时间GNN联系起来,通过将重布线操作解释为多关系GNN框架的扩展,为图重布线提供了新的视角。
- 验证LASER的有效性:在多个任务和基准上验证了LASER的有效性,通过实验表明LASER在减轻过压缩、保持局部性信息和