ICLR 2024 | 图神经网络中的局部感知图重布线

论文信息

题目:Locality-Aware Graph Rewiring In GNNS
图神经网络中的局部感知图重布线
作者:Federico Barbero、Ameya Velingker、Amin Saberi、Michael Bronstein、Francesco Di Giovanni

论文创新点

  1. 提出通用框架:提出一种通用的图重布线框架,通过局部约束的顺序重布线,在输入图和连接性更好的图之间进行插值,满足减少过压缩、保持局部性和稀疏性的要求。
  2. 设计局部感知序列重布线:提出局部感知序列重布线(LASER)框架,选择最短路径距离作为局部性度量,通过优先添加具有低连接性分数的边,在保持图的稀疏性的同时,减轻过压缩问题。
  3. 建立与多关系GNN的联系:将图重布线与多关系GNN和时间GNN联系起来,通过将重布线操作解释为多关系GNN框架的扩展,为图重布线提供了新的视角。
  4. 验证LASER的有效性:在多个任务和基准上验证了LASER的有效性,通过实验表明LASER在减轻过压缩、保持局部性信息和
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值