TGRS 2025 | 从光学图像到合成孔径雷达图像的域自适应定向目标检测

论文信息

题目:Domain Adaptive Oriented Object Detection From Optical to SAR Images
从光学图像到合成孔径雷达图像的域自适应定向目标检测
作者:Hailiang Huang , Jingchao Guo, Huangxing Lin , Yue Huang , Xinghao Ding

论文创新点

  1. 提出像素实例信息传递模型:论文提出了像素实例信息传递模型(PITM),创新性地从像素和实例两个层面进行信息传递,有效探索特定域信息与旋转角度,实现视觉内容和旋转实例的高效迁移,直接解决了由于合成孔径雷达(SAR)训练数据标签稀缺导致的定向目标检测精度受限问题。
  2. 设计像素级信息传递模块:针对光学和SAR域之间明显的视觉差异,设计了自适应中间域合成(AIDS)模块来实现像素级信息传递。通过将SAR域中的斑点噪声与光学域的基本结构信息相结合,生成保留两个域视觉特征的中间域Di,减轻了视觉差异。
  3. 构建实例级信息传递模块
### 小目标检测在高分辨率遥感图像中的应用 小目标检测是遥感领域的重要课题之一,在高分辨率卫星影像中具有广泛应用。针对这一主题的研究主要集中在提高检测精度和鲁棒性方面。 #### 半监督卷积神经网络的应用 一种有效的解决方案是在半监督框架下利用卷积神经网络进行特征提取与分类。例如,SemiCDNet作为一种创新性的方法被提出用于变化检测任务,该模型通过引入少量标注数据来指导未标记样本的学习过程,从而有效提升了对于细微差异的识别能力[^2]。 然而,具体到小目标检测上,研究者们也探索了多种技术路径: - **多尺度特征融合**:为了捕捉不同大小的目标物体,采用多层次的感受野机制可以增强模型对细粒度结构的理解。 - **注意力机制**:通过对输入图像的关键区域施加权重调整,使得网络能够更加关注潜在的小型实体位置。 - **数据增强策略**:由于实际场景中小目标的数量通常较少,因此合理的扩充训练集有助于缓解过拟合现象并改善泛化性能。 ```python import torch.nn as nn class SmallObjectDetector(nn.Module): def __init__(self, num_classes=1): super(SmallObjectDetector, self).__init__() # 定义一个多层感知器作为基础架构 self.features = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=64, kernel_size=(3, 3), padding='same'), nn.ReLU(), ... ) # 添加自定义模块实现特定功能如注意力机制或多尺度处理 def forward(self, x): output = self.features(x) return output ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值