半个顶会都是中国人。。。

ACL 2025在维也纳开幕了!

今年的ACL,可谓是座无虚席,盛况空前。开幕式上,组委会公布了今年参会的具体情况。

作为NLP领域A类顶会之一,ACL每年汇聚了世界各地学者,今年是第63届年会。

回看过去十年,ACL总论文提交量增长了10倍,过去5年增长了4倍。

今年,顶会共提交了8360(8350)篇论文,其中主会录用率为20.3%,共有1699篇论文。Findings录用率为16.7%,共有1392篇论文。

图片

值得一提的是,论文里的中国作者已经占据了半壁江山,比例超过51%。

其中,第一作者有高达51.3%来自大陆,排在第二的美国仅为14%。

图片

图片

那么大模型时代,今年的研究主题有哪些变化?

从提交论文研究的领域来看,NLP应用(13.1%)位列第一,资源和评估占比12.4%,还有多模态和语言Grounding、语言建模等领域,成为了研究重点。

那么,你的论文什么时候发表呢?

尤其是这个人人惶恐又内卷的时代,想要抓住点什么来增强安全感。有一份拿得出手的成绩—发论文的数量和质量无疑是最好的背书。

手握一篇甚至多篇高质量的论文,就是学术成果最好的展现,当然它也意味着未来更优质的工作和薪酬。

论文对很多人来说,是一种挑战。大部分同学的困难不是不想写,而是……

1、找不到热点课题和方向没有idea; 

2、不知道怎么凝练创新点;

3、不清楚不了解完整的科研经验;  

4、论文写作能力欠缺; 

5、代码跑不通没有写作基础;
6、没有数据集,实验验证不了;

鉴于此,给大家推荐咕泡科技的一站式科论文辅导服务


汇集了包括顶会Best Paper提名得主Top50人工智能重点实验室大厂研究科学家等等多位计算机各细分领域的大牛!

如果你在科研实验和文章写作等方面遇到了问题,可以添加下方微信,今天特地申请了10个免费科研梳理的名额


老师会结合你的题目、思路、研究方法帮你分析得清清楚楚、透透彻彻,高效完成论文不要太简单!

扫码立即咨询
科研大牛1对1匹配
图片

图片图片

1

咕泡科技-科研指导计划

覆盖人工智能及其交叉领域,超过50个实用专业方向,支撑学员深度发展科研竞赛指导及学术成果产出,并涵盖权威证书备考,全面支持中高端科技人才培养

图片

图片

扫码立即咨询
科研大牛1对1匹配
图片

图片

图片

2

实战派师资团队

来自全球QS高校TOP1-50、国内C9级高校专家签约人数达600+,博士后资历占比80%。覆盖金融科技、工业智能化、消费互联网等多个行业。

并且对导师进行严选机制,以此保障导师质量!

1)熟悉各级别刊物要求,针对刊物级别,针对性指导

2)注重论文写作的效率和文章质量

3)亲自对文章语言修改和润色

4)提供完整的科研思路、创新性的idea

图片

👆“仅展示部分导师,添加后获取更多导师资料”👆

导师自身的实力只是一部分,但更重要的是导师的教学能力。

目前,咕泡科技 ,已启用一套系统且高效的教学体系,导师会从选题分析-->实验设计及验证-->创新点设计-->成稿润色-->选刊投稿-->录用发表!等全流程进行辅导。确保你能掌握他们的经验与方法,并用在自己的项目中,直至成功发表文章。

最重要的就是选题和 idea 创新点设计。

一个好的idea就能决定文章是能发SCI一区的水平还是SCI四区的水平。

其次是成稿与润色

如何把你的实验过程生动的用文字描述出来,如何给审稿人呈现一个具有创新性的故事。

而这些环节都有一套有效的方法论和套路,这些成熟的经验,都可以直接复用!

图片

👆“仅展示部分流程,详情可添加后咨询”👆

扫码立即咨询
科研梳理or辅导定制方案
定制你的逆袭方案
图片
图片图片

3

精细化服务体系

创新8S服务体系、多对一服务模式,多维度保驾护航

图片

图片

图片

02  科技为擎

咕泡累计投入超2000万元自研资金,打造六大平台,全面革新学习方式

图片

咕泡AI科研实训平台,依托高性能 GPU 算力与便捷在线编程环境,无需复杂配置即可直接开展模型训练与调试,快速提升实操技能。覆盖100 +行业数据集,适配课程学习、AI 竞赛、科研项目等多场景,助力高效完成各类实战任务。支持即开即用的 SaaS 版本与保障数据安全的独立部署,轻松获取优质资源,强化实战能力。

图片

AI科研实训平台实景展

扫码立即咨询
科研梳理or辅导定制方案
定制你的逆袭方案
图片
图片图片

咕泡科技

图片咕泡科技成立于2016年,总部位于湖南长沙,并在上海、北京分别设有分公司及办公点

创立至今,公司始终秉持“教育为基、科技为擎、人才为核”的发展理念,成功搭建覆盖职业技能提升、科研辅导、项目应用实战及职业发展突破的人才培育生态圈,致力于为全球持续输送兼具前沿视野与实践能力的中高端AI科技人才

图片

图片

图片

图片

图片

图片

咕泡科技充分发挥优势,为院校、企业、社会搭建校企人才供需平台,共同培育了大量符合新时代需要的多元化人才,也赢得了来自政府与行业的肯定

图片

图片

自2016年创立至今,咕泡与无数技术人共同书写了成长的篇章:

图片

九年深耕,步履铿锵

在人工智能重构全球竞争格局的今天

咕泡始终坚信:

每一位技术人的成长,都是中国科技创新的基石

每一份职业梦想的实现,都在为产业升级注入澎湃动力

面向未来,我们持续深耕教育、锻造科技、汇聚英才,以持续成长的人才为支点,撬动人工智能时代更广阔的未来

图片

图片

图片

### 多模态领域级会议列表 以下是多模态领域的几个重要国际学术会议,这些会议涵盖了计算语言学、计算机视觉以及人工智能等多个学科交叉的研究方向: #### 1. **ACM Multimedia (ACM MM)** 这是多媒体技术研究的主要论坛之一,专注于多模态数据分析、处理和应用。它吸引了来自工业界和学术界的广泛参与者,涉及的主题包括但不限于视频分析、音频信号处理、自然语言处理及其融合[^2]。 #### 2. **International Joint Conference on Artificial Intelligence (IJCAI)** 作为全球最大的AI综合性会议之一,IJCAI也覆盖了多模态学习的相关议题。研究员在此分享关于如何通过结合不同感官输入提升机器智能的新发现[^4]。 #### 3. **Conference on Neural Information Processing Systems (NeurIPS)** NeurIPS 是机器学习与神经网络领域的旗舰级盛会,在这里可以看到许多有关跨媒体表示学习的工作报告,探讨怎样构建更强大的多模态预训练框架[^3]。 #### 4. **Computer Vision and Pattern Recognition (CVPR)** 尽管 CVPR 主要聚焦于计算机视觉方面的问题,但它同样重视与其他感知形式之间的协作关系,比如图文匹配任务或者基于场景描述生成图片等内容均属于其讨论范畴内[^5]。 #### 5. **Annual Meeting of the Association for Computational Linguistics (ACL)** 对于希望探索语言与其他非言语线索之间相互作用的来说,参加 ACL 将是一个不错的选择。近年来越来越多的文章开始关注到文本之外其他维度上的特征提取方法论改进上。 #### 6. **COLING International Conference on Computational Linguistics** 该系列研讨会自成立以来便致力于推动自然语言处理科学的发展进程;随着技术进步,现在也开始接纳更多围绕着视听觉材料联合建模方面的投稿作品[^1]。 以上列举了一些主要针对或包含有大量多模态主题成分的重要聚会场所信息供参考之用。 ```python # 示例代码展示如何爬取会议网站获取最新动态(仅作演示用途) import requests from bs4 import BeautifulSoup def fetch_conference_updates(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') updates = [] for item in soup.find_all('div', class_='update'): title = item.h3.string.strip() date = item.span['datetime'] link = item.a['href'] updates.append((title, date, link)) return updates[:5] conference_url = "https://example.com/conferences" latest_news = fetch_conference_updates(conference_url) for news_item in latest_news: print(f"{news_item[0]} ({news_item[1]}) -> {news_item[2]}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值