cuda编程与gpu并行计算(三):一个小demo了解cuda基本语法

gpu程序的一般步骤

  1. CPU分配空间给GPU(cudaMalloc)
  2. CPU复制数据给GPU(cudaMemcpy)
  3. CPU加载kernels给GPU做计算(Kernel核: 可以理解为C/C++中的一个函数function)
  4. CPU把GPU计算结果复制回来

过程中,一般要尽量降低数据通讯的消耗,所以如果程序需要复制大量的数据到GPU,显然不是很合适使用GPU运算,最理想的情况是,每次复制的数据很小,然后运算量很大,输出的结果还是很小,复制回CPU。

先做一个小demo,对一个8位数组求平方,很简单
global 关键字那个函数就是在GPU上运行,我们先写完kernel,那还需要从cpu拿数据过去也就是上面的1和2 这里我们为了区分cpu和gpu变量,用h_表示cpu变量(host),用d_表示gpu变量(device),host和device我们在之前的概论提了这里就不解释了。

#include <stdio.h>

//这个就是kernel
__global__ void square(float* d_out,float* d_in){
  int idx = threadIdx.x;
  float f = d_in[idx];
  d_out[idx] = f * f;
}

int main(int argc,char** argv){
  const int ARRAY_SIZE = 8;
  const int ARRAY_BYTES = ARRAY_SIZE * sizeof(float);

  // 在cpu中定义要输入的数组
  float h_in[ARRAY_SIZE];
  for(int i=0;i<ARRAY_SIZE;i++){
    h_in[i] = float(i);
  }
  float h_out[ARRAY_SIZE];

  // 声明gpu指针
  float* d_in;
  float* d_out;

  // 对应1步骤,给gpu指针分配内存空间,和cpu上的数据空间一样大
  cudaMalloc((void**) &d_in,ARRAY_BYTES);
  cudaMalloc((void**) &d_out,ARRAY_BYTES);

  // 对应步骤2,把cpu数据复制给gpu
  cudaMemcpy(d_in,h_in,ARRAY_BYTES,cudaMemcpyHostToDevice);

  // 对应步骤3,把kernel也就是square,加载到gpu上运行,1是一个线程块,其中有64个线程,1个时钟周期就可以结束运算
  square<<<1,ARRAY_SIZE>>>(d_out,d_in);

  // 对应步骤4,把gpu数据复制给cpu
  cudaMemcpy(h_out,d_out,ARRAY_BYTES,cudaMemcpyDeviceToHost);

  // 输入结果
  for(int i=0;i<ARRAY_SIZE;i++){
    printf("%f",h_out[i]);
    printf(((i%4) != 3) ? "\t" : "\n");
  }

  // 释放内存
  cudaFree(d_in);
  cudaFree(d_out);

  return 0;


}

那我们运行一下看看,先编译,cuda 程序后缀是.cu

nvcc -o square square.cu

在这里插入图片描述在这里插入图片描述square就是我们刚编译出来的程序

运行一下看看
在这里插入图片描述结果就是0-7的平方,正确

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值