Alignedreid项目源码分析

本文详细介绍了如何在深度学习项目中使用PyTorch实现SYSU-MM01数据集的预处理,包括数据加载、数据集类中的`__getitem__`和`len`方法,以及度量学习中的DIST计算和正负例挖掘。重点讲解了如何利用torch库进行特征提取、loss计算和模型训练,涉及的知识点有模型构建、优化方法、torch.gather函数的应用和性能指标分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一个项目文件,首先要包括
data_loader.py
数据集类文件
class SYSUData(data.Dataset):# class数据集名称(data是从torch.utils中导入的模块)
#该类下一般有三个函数,初始化函数__init__、生成函数getitem和长度获取函数len;
def init(self, data_dir,):
1.该函数中一般是用来获取图像和标签的地址;
地址的语法:
./当前目录
…/上级目录

Windows ubuntu
相对地址 …/Datasets/SYSU-MM01/ …/Datasets/SYSU-MM01/
绝对地址 “G:\xsf\ast\function_representation_learning-master\” ‘/home/jdk1.8.0_65/bin/java’
 np文件操作相关语法:
    变量名 = np.load(文件夹地址 + 文件名),例如:
	data_dir = '../Datasets/SYSU-MM01/'
	        self.train_label = np.load(data_dir + 'train _label.npy')   
				2.常用语法
					Self.名字=名字(实例化类时传入的变量)
	    def __getitem__(self, index):
	        img1 = self.transform(img1)
	        img2 = self.transform(img2)
	        return img1, img2, target1, target2

#python类中的__getitem__方法,可以将实例化的类,实现字典dict的键值形式。实例对象的key不管是否存在都会调用类中的__getitem__()方法。而且返回值就是__getitem__()方法中规定的return值。语法: 实例化名称【字典中的键值】

在这里插入图片描述

def len(self):
return len(self.train_color_label)

Train.py

1、 添加参数
一般常用参数有:数据集名称和路径、学习率、参数优化方式、backbone、模型路径、训练日志路径、输入图像的宽和高、batchsize、gpu选择等,在输入运行命令时可以改变
2、 OS文件操作相关:
os.path.makedirs 创建文件夹
os.path.isdir 判断是否存在该文件夹
3、 确保训练生成的日志的路径正确,以及日志打印是的格式。
4、 打印信息


```handlebars

```handlebars
print("==========\nArgs:{}\n==========".format(args))
print('==> Loading data..')

print('Dataset 名字 statistics:)
print('  subset   | # ids | # images')
print('  ------------------------------')
print('  visible  | 类别数 | 训练集标签长度)
print('  query    | {
   
   :5d} | {
   
   :8d}'.format(len(np.unique(query_label)), nquery))#搜寻标签
print('  gallery  | {
   
   :5d} | {
   
   :8d}'.format(len(np.unique(gall_label)), ngall))#图库标签
print('  ------------------------------')
print('Data Loading Time:\t {
   
   :.3f}'.format(time.time() - end))

print('==> Building model..')

print('Epoch: [{
   
   }][{
   
   }/{
   
   }] '
                  'Time: {
   
   batch_time.val:.3f} ({
   
   batch_time.avg:.3f}) '
                  'lr:{
   
   :.3f} '
                  'Loss: {
   
   train_loss.val:.4f}
### AlignedReID 在视频中的实现与应用 #### 背景介绍 行人重识别(ReID)旨在不同摄像机视角下匹配同一行人的图像。由于跨摄像头环境下的复杂因素,如分辨率变化、色差和拍摄角度差异[^2],使得这一任务极具挑战性。 #### AlignedReID 的核心原理 AlignedReID 是一种改进型的 ReID 方法,通过引入局部特征对齐机制来提升性能。该方法不仅关注全局特征的学习,还特别强调局部细节的一致性和相似性的挖掘。这种方法能够有效缓解因姿态变化带来的影响,在处理遮挡情况时表现尤为出色。 #### 视频中 AlignedReID 的具体实现流程 为了在视频流中部署 AlignedReID 模型并实现实时跟踪功能,通常遵循如下几个关键技术环节: 1. **目标检测** 使用预训练的目标检测器定位每一帧内的所有潜在行人实例。这一步骤可以采用 YOLOv5 或 Faster R-CNN 等高效算法完成。 2. **特征提取** 对于每一个被检测出来的行人框区域,利用已训练好的 AlignedReID 模型抽取其对应的视觉特征向量。此过程涉及到了局部特征图谱的构建及其后续的空间变换操作以确保最佳对齐状态。 3. **身份关联** 基于提取得到的特征表示,计算当前时刻各候选对象与其他历史记录之间的距离度量值;随后依据设定阈值决定是否将其视为同一个个体的不同观测结果。这里推荐使用欧氏距离或余弦相似度作为衡量标准之一。 4. **轨迹管理** 维护一个动态更新的数据结构用于存储各个独立实体的历史位置信息及时序关系链路。每当新一帧到来之际便执行上述三步逻辑直至整个序列结束为止。 ```python import cv2 from aligned_reid.model.ModelBuilder import ModelBuilder from aligned_reid.utils.feature_extractor import FeatureExtractor def process_video(video_path, output_path): cap = cv2.VideoCapture(video_path) model = ModelBuilder() extractor = FeatureExtractor(model) while True: ret, frame = cap.read() if not ret: break detections = detect_people(frame) # 自定义函数:调用YOLO或其他检测模型获取边界框列表 features = extractor.extract_features(detections) # 提取每个边框内的人体特征 update_tracks(features) # 更新现有追踪对象的状态,并创建新的追踪条目 annotated_frame = draw_bounding_boxes_and_ids(frame, tracks) # 可视化标注后的画面 write_output(annotated_frame, output_path) # 将带有标签的结果保存至指定目录 cap.release() process_video('input.mp4', 'output/') ``` 这段代码展示了如何在一个完整的视频处理管道里集成 AlignedReID 技术框架的核心组件——从读入原始素材到最后输出带有人物编号标记的画面文件。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值