自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(97)
  • 收藏
  • 关注

原创 labelme数据标注保姆级教程:从安装到格式转换全流程,附常见问题避坑指南(含视频讲解)

成功启动 labelme后,我们先来熟悉一下它的界面布局,以便后续操作更加顺畅。

2025-07-29 21:38:46 565

原创 PyCharm+DeepSeek 组合技:3 步搭建私人 AI 编程助手,重构代码、生成注释一键搞定

配置 Continue 插件:安装完成后,在右侧标签栏中找到 “Continue” 标签,点击进入设置。点击 “设置” 按钮,将 apiKey 替换为之前保存的 DeepSeek API Key,选择 “DeepSeek Coder” 模型,点击连接。安装 Continue 插件:在 PyCharm 中,依次点击 “文件 -> 设置 -> 插件”,搜索 “Continue” 插件并安装。”,在左侧菜单中点击 “API Keys”,创建一个 API Key 并复制保存。3.使用 CodeMoss 插件。

2025-07-28 11:40:26 325

原创 【打怪升级 - 05】RK3588 部署实战:YOLO11/YOLOv8(det/seg/pose/obb) 毫秒级推理入门(理论精讲 + 代码落地,新手零门槛上手)

RK3588 作为国产化芯片中的佼佼者,在边缘计算和嵌入式设备领域展现出强劲实力。其搭载的四核 Cortex - A76 和四核 Cortex - A55 处理器架构,为深度学习模型的运行提供了坚实的算力支撑。同时,集成的专用 NPU 单元,针对神经网络运算进行了深度优化,能够高效处理 YOLO 系列模型的推理任务,满足实时性要求较高的场景需求。YOLO 系列模型一直是目标检测领域的热门选择, YOLOv11 更是在精度和速度上达到高峰。在国产化芯片 RK3588 上部署这些模型,既能发挥模型的高效检测能力

2025-07-27 18:15:45 355

原创 【打怪升级 - 04】Jetson 部署必看:YOLOv8/YOLOv10/YOLO11/YOLO12 毫秒级推理全指南(理论 + 代码实战,新手入门零门槛教程)

通过本文,你已打通在 Jetson 上部署 YOLOv8/v10/v11/v12 的全流程:从环境搭建、模型优化到代码实战,核心是利用 TensorRT 加速实现毫秒级推理。部署自定义训练的 YOLO 模型(用训练后按相同步骤优化);测试多摄像头并发推理(需优化线程调度);探索更极致的优化(如 INT8 量化、模型剪枝)。通过本文,你已打通在 Jetson 上部署 YOLOv8/v10/v11/v12 的全流程:从环境搭建、模型优化到代码实战,核心是利用 TensorRT 加速实现毫秒级推理。

2025-07-26 18:52:41 978

原创 【打怪升级 - 03】YOLO11/YOLO12/YOLOv10/YOLOv8 完全指南:从理论到代码实战,新手入门必看教程(文末有视频介绍)

新的骨干网络:采用更高效的特征提取网络,在减少计算量的同时提升特征表达能力改进的颈部结构:优化了特征融合机制,增强了多尺度特征处理能力优化的损失函数:提高了模型对小目标和遮挡目标的检测能力动态锚框机制:根据不同数据集自动调整锚框参数,提升检测精度YOLO12 则引入了一种以注意力为中心的架构,它不同于以往YOLO 模型中使用的基于 CNN 的传统方法,但仍保持了许多应用所必需的实时推理速度。该模型通过对注意力机制和整体网络架构进行新颖的方法创新,实现了最先进的物体检测精度,同时保持了实时性能。

2025-07-25 00:47:15 832

原创 【已解决】YOLO11模型转wts时报错:PytorchStreamReader failed reading zip archive

【代码】【bug】YOLO11s模型转wts时报错:PytorchStreamReader failed reading zip archive。

2025-07-24 14:39:58 236

原创 【打怪升级 - 02】零基础也能懂!PyTorch 保姆级教程:手把手实现你的第一个深度学习网络(文末有视频课程全文跟讲)

PyTorch深度学习全流程指南 本文介绍了使用PyTorch实现深度学习的完整流程:1)数据加载:通过Dataset和DataLoader高效处理数据;2)模型构建:使用nn.Module搭建神经网络;3)训练优化:采用损失函数和优化器进行参数调整;4)测试验证:评估模型泛化能力。教程以FashionMNIST数据集为例,演示了从数据准备到模型训练的全过程,并提供了完整的代码实现。PyTorch凭借其简洁API和强大功能,已成为当前深度学习领域的主流框架,适用于计算机视觉、自然语言处理等多种任务。掌握这套

2025-07-23 19:45:40 794

原创 【已解决】Jetson Orin NX apt更换国内源

【代码】【bug】Jetson Orin NX apt更换国内源。

2025-07-23 17:37:00 242

原创 【打怪升级 - 01】保姆级机器视觉入门指南:硬件选型 + CUDA/cuDNN/Miniconda/PyTorch/Pycharm 安装全流程(附版本匹配秘籍+文末有视频讲解)

深度学习环境配置指南 本文介绍了深度学习开发所需的硬件选型和软件环境配置。硬件方面详细讲解了GPU、CPU、内存和硬盘的选择标准,提供了从入门到专业的设备推荐表。软件部分重点介绍了CUDA和cuDNN的安装步骤,包括版本选择、下载安装和验证方法。文章还简要提及了PyTorch等深度学习框架的兼容性考虑,为读者搭建完整的深度学习开发环境提供了实用指导。

2025-07-22 23:28:35 1192

原创 从 0 到 1 实战瑞芯微 Rockchip RKNN 硬件编码:手撸代码实现硬件编码 + 视频保存 + RTSP 推流完整学习笔记(纯纯干货)

写在前面,博主本人一直从事图像算法工作用到最多的机载计算机就是Jetson 和 RK3588。两者很好的平衡了性能和价格,Jetson 算力高、价格高,RK3588算力低、价格也低。RK3588在国内的生态、产品相对都比较成熟,而且历经时间考验。所以在很多需要国产化替代、低成本的场景下,我们都会选择RK3588。下面也是博主在实际的项目背后 ,研究和开发的基于RK3588硬件编码器的视频保存、实时推流代码分享。

2025-07-22 22:20:14 262

原创 从 0 到 1 实战英伟达 Jetson 推流:手撸代码实现硬件编码 + 视频保存 + RTSP 推流完整学习笔记(纯干货)

在英伟达 jetson上实现视频硬件编码的视频保存、实施推流,相对来说较为简单。因为英伟达的官方在jetson上做了很多工作,让开发者能够很方便的使用,节省了很多开发时间。比如当前的视频编解码,我们只需要配好gstreamer的工作流就可以。在jetson上的视频保存和推流,博主较为倾向使用opencv和gstreamer实现。英伟达的jetson系列官方对gstreamer支持较好,有单独的硬件编解码器可以调用。好处是既能节省cpu的使用资源,也能提高算法的运行速度。

2025-07-22 20:08:04 217

原创 从 0 到 1 实战 Intel 集显推流:手撸代码实现硬件编码 + 视频保存 + RTSP 推流完整学习笔记(纯干货)

本笔记主要记录在Intel平台上基于 FFmpeg 库实现的视频处理组件 BsVideoSaver 和 BsPushStreamer,用于视频的本地保存和网络推流功能。组件支持将 BGR 格式的图像帧编码为 H.264/265 视频流,可配置编码器、帧率、比特率等参数。通读全笔记就会发现本篇和Nvidia那篇文字的代码很相似,会不会怀疑博主本人贴错代码了。实际上是没有的。这两个平台视频保存、推流主要的区别在于图像格式转换以及硬件编码。其他的部分都是在cpu上进行的,又都是x86架构,所以代码可以复用。

2025-07-22 19:08:55 725

原创 从 0 到 1 实战 Nvidia 独显推流:手撸代码实现硬件编码 + 视频保存 + RTSP 推流完整学习笔记(只有干货)

本笔记主要记录基于 FFmpeg 库实现的视频处理组件 BsVideoSaver 和 BsPushStreamer,用于视频的本地保存和网络推流功能。组件支持将 BGR 格式的图像帧编码为 H.264/265 视频流,可配置编码器、帧率、比特率等参数。common.h// 获取系统启动以来的毫秒数,用于时间戳计算// tv_sec (s) tv_nsec (ns-纳秒)//视频帧数据结构,用于存储原始图像数据:public:BGR = 0,YUV420P,

2025-07-22 18:22:36 231

原创 从 0 到 1 搞定nvidia 独显推流:硬件视频编码环境安装完整学习笔记

笔记用于安装和配置一套完整的媒体处理工具链,包括 NVIDIA 编码头文件、带 CUDA 加速的 FFmpeg 以及 ZLMediaKit 流媒体服务框架,适用于需要进行视频编解码、流媒体推流 / 拉流等场景的开发与部署。

2025-07-22 13:04:16 383

原创 【已解决】 GStreamer找不到编码器

4.检查 TLS 配置:在某些情况下,如果使用的是特定编译选项或链接到不同的 C 库,可能会导致 TLS 问题。请确保编译时没有与线程相关的不兼容选项。这个错误信息表明 GStreamer 在加载某些插件时失败,具体是因为在静态线程局部存储(TLS)块中无法分配内存。确保你的操作系统及所有相关的软件包都是最新版本。检查系统资源:确保你的系统有足够的内存和资源。如果系统资源紧张,可以尝试释放一些内存或重启计算机。可能某些库文件损坏或者不兼容,你可以尝试重新安装 GStreamer 和它的插件。

2025-07-22 11:59:31 185

原创 从 0 到 1 搞定 Intel 核显推流:硬件视频编码环境安装完整学习笔记

本文介绍了编译安装Intel Media SDK及相关组件的步骤,主要包括VA-API和Media-Driver的安装流程。首先需确定版本号(如Media SDK 20.2.1),然后依次安装依赖库、编译libva和libva-utils,再配置和构建media-driver与gmmlib。安装完成后需设置环境变量,并通过vainfo工具验证驱动是否正常工作。成功安装后,vainfo将显示支持的编解码配置信息,包括H.264、HEVC、VP9等多种格式的编解码能力。该教程提供了完整的命令行操作指南,适用于L

2025-07-22 11:45:45 239

原创 【bug】Yolo11在使用tensorrt推理numpy报错

这是 NumPy 库的运行时错误(RuntimeError)和导入错误(ImportError),核心问题是 NumPy 编译的 API 版本(0x10)与当前实际使用的 NumPy 版本(0xd,即 13 进制,对应十进制 13 ,不同版本 API 不兼容。tips:如果因为numpy升级导致其他错误,那就需要把其他包也升级一下。

2025-07-22 11:26:23 224

原创 【bug】 jetson上opencv无法录制h264本地视频

avc1是唯一能够软件编码h264的opencv的编码器。2.源码编译(大概需要1h)

2025-07-22 11:11:29 210

原创 【bug】ubuntu20.04 orin nx Temporary failure resolving ‘ports.ubuntu.com‘

【代码】【bug】ubuntu20.04 orin nx Temporary failure resolving ‘ports.ubuntu.com‘

2025-07-22 10:37:58 195

原创 【bug】global loadsave.cpp:241 cv::findDecoder imread_(‘xxx‘):: can‘t open/read file

【代码】【bug】global loadsave.cpp:241 cv::findDecoder imread_(‘xxx‘):: can‘t open/read file。

2025-07-22 10:29:00 154

原创 【bug】ImportError: /lib/aarch64-linux-gnu/libGLdispatch.so.0: cannot allocate memory in static TLS

【代码】【bug】ImportError: /lib/aarch64-linux-gnu/libGLdispatch.so.0: cannot allocate memory in static TLS bl。

2025-07-20 10:55:15 213

原创 【bug】OpenCV版本切换-ubantu

我的电脑系统安装了opencv 4.7.0,但我编译用的代码需要opencv 4.2.0。尝试使用docker,但在里面rviz打不开,反复横跳解决问题,有使用vncserver,但其打开的界面无法交互。后来发现,我的电脑的里面是由opencv 4.2.0的,只是需要在编译时特别设置。这样编译时就可以用上述路径下的4.2.0的opencv库文件了。

2024-12-11 15:17:53 189

原创 【bug】Compiling error using make install to install OpenCV 4 in orin nx

https://stackoverflow.com/questions/55520742/compiling-error-using-make-install-to-install-opencv-4-in-raspbian-raspberry-pi

2024-12-09 19:11:56 144

原创 error: ‘getCurrentCUDAStream’ is not a member of ‘at::cuda’ cudaStream_t stream = at::cuda::getCurre

尝试修改提示上述错误的文件中的以下内容。

2024-11-29 10:37:10 359

原创 编译Python动态库,出现error while loading shared libraries: libpython3.8.so.1.0: cannot open shared

编译Python动态库,出现error while loading shared libraries: libpython3.8.so.1.0: cannot open shared。

2024-11-27 14:23:49 236 1

原创 [error]THC/THC.h: No such file or directory

pytorch在最新的版本(>=1.9)将THC/THC.h文件删除了.全局搜索并删除每一行#include <THC/THC.h> .

2024-11-27 13:41:54 148

原创 pip清华源

【代码】pip清华源。

2024-11-27 13:29:21 106

原创 【solved】[Errno 13] Permission denied: ‘/usr/lib/python3.8/site-packages‘

【代码】【solved】[Errno 13] Permission denied: ‘/usr/lib/python3.8/site-packages‘

2024-11-27 13:02:32 249

原创 windows环境下Tensorflow-gpu环境使用遇到的坑

由于第一次使用显卡加速模型,按着网络上正常教程配置好cuda cudnn之后 然后安装对应版本的tensorflow-gpu 结果 结果出现了如下情况长达十几分钟的时间里 程序一直毫无反应 (其实是gpu运算启动时间,可能要十几分钟,比起gpu20倍以上的运算速度 这个等待非常值得) 结果折腾了好几天 换各种版本的软件 一点用没有...

2021-06-08 14:01:18 481

原创 COMP9021,Assignment 3作业辅导

Assignment 3COMP9021, Session 2, 20161 Aim of assignment and general descriptionThe aim of the assignment is to analyse English sentences and solve logical puzzles. The assignment willmake you work with textual data and reinforce the fundamental progra

2020-11-21 07:43:29 933

原创 ValueError: Layer sequential expects 1 inputs, but it received 2 input tensors. Inputs received: [<

在训练模型时,遇到了这个错误,找了很多资料也没有解决,出错的代码:model.fit(X_train, y_train, batch_size=b_size, epochs=max_epochs,validation_data = [X_val, y_val],callbacks=[reduce_lr], shuffle=True, verbose=2)123最终在stackOverflow上找到了类似的问题,有了解决方法:在这里插入图片描述照着改了写法后解决了,并且带着同款疑问,不知道为

2020-11-21 07:33:56 4453 5

转载 Pandas在DataFrame中查找重复行的索引

在给定的DataFrame中查找相同行的索引而不迭代各行的pandas方法:可以找到具有unique = df [df.duplicated()]的所有唯一行,然后使用unique.iterrows()迭代唯一条目,并在pd.where()的帮助下提取相等条目的索引例:给定以下结构的DataFrame: | param_a | param_b | param_c1 | 0 | 0 | 02 | 0 | 2 | 13 | 2 | 1

2020-08-23 19:28:57 11418 1

原创 成功解决UnicodeDecodeError: ‘utf-8‘ codec can‘t decode byte 0xc8 in position 0:invalid continuation byte

python读取csv文件报错UnicodeDecodeError: 'utf-8' codec can't decode byte 0xc8 in position 0: invalid continuation byte问题解决添加:在读取代码行括号内添加encoding="gb18030",即可消除这个错误。

2020-08-21 07:16:27 1950 1

原创 成功解决pandas.errors.ParserError: Error tokenizing data. C error: Expected 1 fields in line 4, saw 2

问题描述:Traceback (most recent call last): File "C:/Users/Lenovo/Desktop/水泥数据/dataprocess1.py", line 8, in <module> data1 = pd.read_csv("doubledata.xlsx") File "D:\Users\Lenovo\miniconda3\lib\site-packages\pandas\io\parsers.py", line 676, in pa

2020-08-21 00:38:57 18003 1

原创 《视觉slam十四讲》阅读笔记及课后习题详解——第一讲

前言今天开始,开启这一系列博客,记录自己的学习过程。博客大致分为阅读笔记和课后习题。更新计划:2020.08.19——2020.08.31:更新第一、二、三、四讲2020.09.01——2020.09.31:更新第五、六、七讲2020.10.01——2020.10.31:更新第八、九、十、十一讲2020.11.01——2020.11.31:更新第十二、十三、十四讲读书笔记1.1 主要内容SLAM:SLAM,全称是Simultaneous Localization and Mapping,

2020-08-19 16:31:21 376

原创 每日学点c++:复合类型篇(1)

日常应用中,简单的C++的简单基本类型,无法满足其数据的要求。于是便诞生了——复合类型。这种类型是基于基本整形和浮点类型创建的。影响最为深远的复合类型是类,是OOP的一个难点。1.1 数组定义:数组(array)是一种数据格式,能够存储多个同类型的值。例如,数组可以存储60个int类型的值(这些值表示游戏5年来的销售量)。存储:每个值都存储在一个独立的数组元素中,计算机在内存中依次存储数组的各个元素。创建:创建数组,可使用声明语句。数组声明应指出以下三点:存储在每个元素中的值的类型

2020-08-11 22:06:51 233

原创 每日学点c++:处理数据篇(3)——习题篇

第三章习题1.编写一个小程序,要求用户使用一个整数指出自己的身高(单位为英寸),然后将身高转换为英尺和英寸。该程序使用下划线字符来指示输入位置。另外,使用一个const符号常量来表示转换因子。注:1英尺 = 12英寸;代码清单:# include <iostream>int main(){ using namespace std; const int scale = 12; int height; cout << " Enter

2020-08-07 23:27:13 426 2

原创 每日学点c++:处理数据篇(2)

接着上一篇:每日学点c++:处理数据篇(1)1.3 整型字面值整型字面值(常量)是显式地书写的常量,如508或612。C++能够以三种不同的计数方式来书写整数:十进制、八进制和十六进制。十进制:第一位为1~9;八进制:第一位为0,第二位为1~7;十六进制:前两位为0x或0X,字符a~ f和A~F表示了十六进制位,对应于10 ~ 15。...

2020-08-07 01:13:40 337

原创 每日学点c++:处理数据篇(1)

0.简介面向对象编程(OOP)的本质是设计并扩展自己的数据类型。设计自己的数据类型就是让类型与数据匹配。1.简单变量程序通常都需要存储信息——如成都今天天气的湿度、美国疫情感染人数等等;计算机存储信息,程序必须记住3种不同的属性:信息将存储在哪里;要存储什么值;存储何种类型的信息;常用策略是声明变量。事实上,声明变量是指,程序将找到一块能够存储该数据类型的的内存,将该内存单元标记为变量名,并将存储的值复制到该内存单元内中;然后,就可以在程序中使用变量名来访问该内存单元。1.1 变量名

2020-08-03 22:02:43 183

原创 每日学点c++:入门篇

0.描述通过玻璃窗拍摄的照片通常同时包含所需的场景和不良反射。 分离反射层和透射层是一个重要的问题,具有美学和实际应用价值。在这项工作中,我们介绍了利用重影提示来利用图层之间的不对称性,从而帮助减少问题的不适定性。这些提示是由反射场景从玻璃表面移开的两次反射产生的...

2020-08-03 00:31:42 329

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除