旅行商问题(TSP, Traveling Salesman Problem)是一个经典的优化问题,要求找到一个最短的路线,使得旅行商从一个城市出发,经过所有城市一次后,回到原出发点。这是一个NP难问题,在数学优化和计算机科学中具有重要地位。MATLAB提供了一些工具和方法来解决这种类型的优化问题。
案例分析:使用MATLAB解决旅行商问题
假设我们有一组城市的坐标,需要找到一条路径,使得旅行商经过所有城市一次后回到起点,且总旅行距离最短。
步骤 1: 准备数据
首先,定义一组城市的坐标:
cities = [10, 20; 20, 30; 30, 40; 40, 50; 50, 60; 60, 70; 70, 80; 80, 90; 90, 100; 10, 30];
numCities = size(cities, 1);
步骤 2: 计算城市间距离
计算每对城市间的欧几里得距离:
distances = zeros(numCities);
for i = 1:numCities
for j = 1:numCities
distances(i, j) = sqrt((cities(i, 1) - cities(j, 1))^2 + (cities(i, 2) - cities(j, 2))^2);
end
end
步骤 3: 使用遗传算法求解TSP
MATLAB的全局优化工具箱提供了遗传算法(GA),可用于解决TSP。这里我们使用ga
函数来寻找最短路径:
% 定义遗传算法参数
opts = optimoptions('ga', 'PopulationSize', 100, 'MaxGenerations', 500, 'Display', 'iter', 'PlotFcn', @gaplotbestf);
% 适应度函数
fitnessFcn = @(tour) sum(distances(sub2ind(size(distances), tour, [tour(2:end) tour(1