Python实战开发及案例分析(27)—— 均值算法

        均值算法通常指的是用于聚类的k-均值(k-means)算法。k-means是一种常见的无监督学习算法,用于将数据集划分为k个不同的簇(cluster),使得同一簇内的数据点彼此相似而不同簇间的数据点差异较大。

k-means算法的基本步骤

  1. 初始化:随机选择k个初始质心(centroid)。
  2. 分配数据点:将每个数据点分配到最近的质心所在的簇中。
  3. 更新质心:计算每个簇的质心,即簇中所有点的平均值,更新质心的位置。
  4. 重复:重复步骤2和步骤3,直到质心位置不再变化或达到最大迭代次数。

Python实现k-means算法

        我们将使用Python和scikit-learn库来实现k-means算法,并通过一个具体的案例来展示其应用。

步骤一:加载数据和库

        首先,我们需要加载必要的库和数据集。在本例中,我们将使用一个简单的二维数据集进行聚类。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans

# 生成示例数据
X, y = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0)

# 可视化数据
plt.scatter(X[:, 0], X[:, 1], s=50)
plt.show()
步骤二:使用k-means进行聚类

        接下来,我们使用scikit-learn中的KMeans类进行聚类。

# 创建k-means模型
kmeans = KMeans(n_clusters=4)

# 训练模型
kmeans.fit(X)

# 预测簇标签
y_kmeans = kmeans.predict(X)

# 可视化结果
plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, s=50, cmap='viridis')

centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='red', s=200, alpha=0.75, marker='x')
plt.show()

案例分析:客户分群

        假设我们有一个客户数据集,其中包含客户的年收入和消费分数。我们希望通过k-means聚类将客户分为不同的群组,以便进行个性化营销。

数据加载和预处理

        我们使用一个示例数据集,其中包含客户的年收入和消费分数。

import pandas as pd

# 生成示例客户数据
np.random.seed(42)
income = np.random.normal(50000, 15000, 100)
spending_score = np.random.normal(50, 10, 100)
data = {'Income': income, 'Spending_Score': spending_score}
df = pd.DataFrame(data)

# 可视化数据
plt.scatter(df['Income'], df['Spending_Score'], s=50)
plt.xlabel('Annual Inco
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

贾贾乾杯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值