
python实战开发及案例分析
文章平均质量分 92
以实战为线索,通过具体的案例来讲解python编程技巧。
贾贾乾杯
学无止境,为世界之光!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Python实战开发及案例分析(32)—— 柔性数组
柔性数组(Dynamic Array)是一种能够在运行时动态调整大小的数据结构,常用于实现类似于Python列表(list)那样的可变数组。在实现动态数组时,我们通常使用倍增策略,即当数组容量不足时,将其容量加倍。原创 2024-05-20 23:03:57 · 1243 阅读 · 1 评论 -
Python实战开发及案例分析(31)—— 哈希算法
哈希算法(Hash Algorithm)是一种将输入数据映射到固定大小的输出(通常是一个整数或字符串)的算法。哈希算法广泛应用于数据结构(如哈希表)、加密、数据校验等领域。下面将详细介绍哈希算法的基本原理,并通过具体案例展示如何在Python中实现和应用哈希算法。原创 2024-05-20 22:54:06 · 2689 阅读 · 0 评论 -
Python实战开发及案例分析(30)—— 剪枝
剪枝(Pruning)是用于优化搜索算法的一种技术,通过减少需要评估的节点数量,从而提高算法的效率。剪枝常用于深度优先搜索(DFS)和广度优先搜索(BFS)等搜索算法中,特别是在解决组合优化问题时,如在棋类游戏的博弈树中进行搜索。原创 2024-05-18 23:15:28 · 1614 阅读 · 3 评论 -
Python实战开发及案例分析(29)—— 霍夫曼树
霍夫曼树(Huffman Tree)是一种用于数据压缩的最优二叉树编码方法。它通过构建一个最优的二叉树,为每个字符分配一个唯一的二进制码,以实现数据的无损压缩。霍夫曼编码利用字符出现频率来构建最优二叉树,频率越高的字符其编码长度越短,从而达到压缩的目的。原创 2024-05-18 22:58:26 · 1081 阅读 · 2 评论 -
Python实战开发及案例分析(28)—— 预编码算法
预编码算法(Precoding Algorithm)通常用于无线通信系统中,尤其是多输入多输出(MIMO)系统中,以提高数据传输的可靠性和效率。预编码是为了在发送端对信号进行处理,以优化传输性能。在MIMO系统中,预编码可以用于降低干扰,提高信号的信干噪比(SINR),以及实现空间复用等。常见的预编码方法包括线性预编码(如零强迫预编码和最小均方误差预编码)和非线性预编码。原创 2024-05-17 22:47:20 · 1917 阅读 · 1 评论 -
Python实战开发及案例分析(27)—— 均值算法
均值算法通常指的是用于聚类的k-均值(k-means)算法。k-means是一种常见的无监督学习算法,用于将数据集划分为k个不同的簇(cluster),使得同一簇内的数据点彼此相似而不同簇间的数据点差异较大。原创 2024-05-17 22:30:41 · 989 阅读 · 0 评论 -
Python实战开发及案例分析(26)—— 近邻算法
近邻算法(Nearest Neighbor Algorithm),尤其是在机器学习和数据科学中,通常指的是k最近邻(k-Nearest Neighbors, k-NN)算法。这是一种基本的分类和回归方法,它通过测量不同特征点之间的距离来进行预测。这里,我们将详细探讨如何用Python实现k-NN算法,并通过一个分类案例来分析其应用。原创 2024-05-16 22:54:39 · 968 阅读 · 0 评论 -
Python实战开发及案例分析(25)—— 爬山算法
爬山算法(Hill Climbing)是一种启发式搜索算法,常用于解决优化问题。它的核心思想是从一个初始解开始,不断朝着增益最大的方向移动,直到达到局部最优解。原创 2024-05-15 09:58:24 · 2049 阅读 · 0 评论 -
Python实战开发及案例分析(24)—— 图搜索算法
这些算法涵盖了广泛的图搜索和路径查找需求,每种算法都有其特定的应用场景和优缺点。了解和掌握这些算法,可以帮助更好地解决实际问题。原创 2024-05-15 09:48:00 · 1486 阅读 · 0 评论 -
Python实战开发及案例分析(23)—— 迭代加深
迭代加深搜索(Iterative Deepening Search,IDS)是一种结合了深度优先搜索(DFS)的内存效率和广度优先搜索(BFS)的完备性和最优性的搜索算法。它通过逐步增加深度限制来重复执行深度限制的深度优先搜索(Depth-Limited Search,DLS),结合了DFS的空间效率和BFS的完全性。IDS在找到目标节点时能够确保找到最短路径,尤其适用于有大量节点的状态空间。原创 2024-05-14 12:07:02 · 1056 阅读 · 0 评论 -
Python实战开发及案例分析(22)—— 深度优先
深度优先搜索(Depth-First Search, DFS)是一种用于遍历或搜索树或图的算法。与广度优先搜索不同,深度优先搜索尽可能深地遍历图的分支,直到找到目标或达到死胡同后才回溯。DFS可以使用递归实现或利用栈来进行非递归实现。原创 2024-05-14 11:53:00 · 797 阅读 · 2 评论 -
Python实战开发及案例分析(21)—— 广度优先
广度优先搜索(Breadth-First Search, BFS)是图和树结构中的一种基本搜索算法。它从根节点开始逐层遍历,先访问所有邻近节点,然后再遍历这些邻近节点的邻居。BFS通常使用队列来实现这一过程。在Python中,可以使用collections模块的deque实现高效的队列操作。原创 2024-05-13 10:04:18 · 1185 阅读 · 2 评论 -
Python实战开发及案例分析(20)—— 宽度优先
宽度优先搜索(Breadth-First Search, BFS)是一种遍历图或树的算法。它从根节点开始,探索所有邻近节点,然后再按顺序访问每个邻近节点的邻居,直到所有节点都被访问为止。在图中,为了避免访问同一个节点多次,通常使用一个队列来记录已经访问过但其邻居节点还未完全探索的节点。原创 2024-05-13 09:49:53 · 1463 阅读 · 0 评论 -
Python实战开发及案例分析(19)—— 推荐算法
推荐系统是一种信息过滤系统,它的目标是预测用户对物品的偏好程度。在Python中,我们可以使用多种技术来实现推荐算法,包括基于内容的推荐、协同过滤推荐以及利用机器学习模型的混合推荐系统。原创 2024-05-12 11:46:23 · 4193 阅读 · 4 评论 -
Python实战开发及案例分析(18)—— 逻辑回归
逻辑回归是一种广泛用于分类任务的统计模型,尤其是用于二分类问题。在逻辑回归中,我们预测的是观测值属于某个类别的概率,这通过逻辑函数(或称sigmoid函数)来实现,该函数能将任意值压缩到0和1之间。原创 2024-05-12 10:53:13 · 1352 阅读 · 4 评论 -
Python实战开发及案例分析(17)—— 粒子群算法
粒子群优化(Particle Swarm Optimization, PSO)是一种计算方法,它通过模拟鸟群的社会行为来解决优化问题。粒子群优化算法中的每个“粒子”代表问题空间中的一个候选解决方案。每个粒子都会根据自己的经验以及邻居的经验来调整其在解空间中的位置。原创 2024-05-11 11:08:17 · 3108 阅读 · 3 评论 -
Python实战开发及案例分析(16)—— 遗传算法
遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学原理的搜索启发式算法。它们通常用于解决优化和搜索问题,基于“适者生存”的自然选择概念,通过选择、交叉(杂交)、变异操作在一系列迭代中逐步优化解决方案。原创 2024-05-11 10:37:38 · 3592 阅读 · 5 评论 -
Python实战开发及案例分析(15)—— 支持向量机
支持向量机(Support Vector Machine,SVM)是一种监督学习模型,适用于分类和回归任务。SVM 尤其擅长处理小样本、高维度数据,以及复杂的分类任务。其基本思想是找到最佳的超平面将不同类别分开,并最大化两类之间的间隔(Margin)。原创 2024-05-10 15:24:37 · 1766 阅读 · 0 评论 -
Python实战开发及案例分析(14)—— 随机森林
随机森林(Random Forest)是一种基于决策树的集成学习方法,由多个独立训练的决策树组成,能够显著提升模型的性能和稳定性。它通过引入随机性,增强了模型的泛化能力。随机森林通常用于分类和回归问题。原创 2024-05-10 15:03:16 · 6213 阅读 · 1 评论 -
Python实战开发及案例分析(13)—— 散列表
散列表(Hash Table)是一种高效的键值对数据结构,具有快速的查找、插入和删除操作。它通过哈希函数将键映射到散列表的索引,实现对数据的快速访问。原创 2024-05-09 10:23:23 · 891 阅读 · 0 评论 -
Python实战开发及案例分析(12)—— 模拟退火算法
模拟退火算法(Simulated Annealing)是一种概率搜索算法,源自于金属退火过程。在金属退火中,通过缓慢降低温度,金属内部的原子能够从高能态逐步达到较低能态。模拟退火算法利用类似的原理,通过随机搜索和概率接受策略来找到近似最优解。原创 2024-05-09 10:04:00 · 3633 阅读 · 0 评论 -
Python实战开发及案例分析(11)—— b树
B树(B-Tree)是一种自平衡的树数据结构,它允许高效地进行查找、插入、删除等操作,广泛应用于数据库和文件系统。B树的每个节点可以包含多个键,并且有多个子节点。原创 2024-05-07 19:17:48 · 1360 阅读 · 0 评论 -
Python实战开发及案例分析(10)—— 最小二乘法
最小二乘法是一种用于拟合数据的线性回归技术,它通过最小化残差平方和来找到最佳拟合线。通常用于估计线性关系,但也可以扩展到多元回归和非线性关系中。Python 提供了多种方式来实现最小二乘法,包括使用 NumPy、SciPy 和 scikit-learn。原创 2024-05-07 19:00:07 · 4419 阅读 · 0 评论 -
Python实战开发及案例分析(9)—— 决策树
决策树是一种用于分类和回归的机器学习模型。它通过学习一系列的决策规则将数据分成不同的类别或预测数值。决策树在构建时依赖于属性选择度量,如信息增益、基尼系数等。原创 2024-05-06 20:59:34 · 3514 阅读 · 8 评论 -
Python实战开发及案例分析(8)—— 聚类算法
聚类是一种将数据分组的无监督学习方法,其目标是使同组内的数据相似度高,不同组间的数据相似度低。常用的聚类算法包括K均值聚类、层次聚类和DBSCAN等。下面是这些算法的Python实现和案例分析。原创 2024-05-06 11:49:57 · 3437 阅读 · 2 评论 -
Python实战开发及案例分析(7)—— 排序算法
排序算法是计算机科学中的基础,用于将数据元素按照特定的顺序排列。Python 提供了多种方式来实现排序算法,包括内置的排序函数和手动实现各种经典排序算法。原创 2024-05-05 11:10:25 · 1043 阅读 · 0 评论 -
Python实战开发及案例分析(6)—— 动态规划
动态规划(Dynamic Programming, DP)是一种解决复杂问题的算法,它通过将问题分解成较小的子问题,并利用这些子问题的解来有效解决整个问题。动态规划特别适用于具有重叠子问题和最优子结构的问题。原创 2024-05-05 10:56:07 · 1264 阅读 · 0 评论 -
Python实战开发及案例分析(5)—— 贪心算法
贪心算法是一种在每一步选择中都采取当前状态下最好或最优(即最有利)的选择,从而希望导致结果是全局最好或最优的算法。贪心算法不能保证得到最优解,但在某些问题中非常有效,并容易实现。原创 2024-05-04 13:39:27 · 1694 阅读 · 0 评论 -
Python实战开发及案例分析(4)—— 线性回归
线性回归是统计学中用于量化两个或多个变量之间关系的方法之一。在Python中,可以使用多个库来执行线性回归,如statsmodels和scikit-learn。这里我们将分别使用这两个库来展示如何进行线性回归分析,并通过具体的案例来解释其实现过程。原创 2024-05-04 13:29:01 · 1742 阅读 · 0 评论 -
Python实战开发及案例分析(3)——多目标优化
多目标优化涉及同时优化两个或更多的冲突目标,而这些目标往往不能同时达到最优。在Python中,多目标优化可以通过多种方法实现,包括使用进化算法或其它启发式方法来探索解决方案的权衡。原创 2024-05-03 11:50:39 · 6120 阅读 · 3 评论 -
Python实战开发及案例分析(2)——单目标优化
在Python中,进行单目标优化主要涉及定义一个优化问题,包括一个目标函数和可能的约束条件,然后选择合适的算法来求解。Python提供了多种库,如SciPy、Pyomo、GEKKO等,用于处理各种优化问题。原创 2024-05-03 11:35:55 · 1982 阅读 · 2 评论 -
Python实战开发及案例分析(1)——Web开发
Python 是一种多功能的编程语言,在 Web 开发方面也有广泛的应用,尤其是通过使用 Django 和 Flask 这样的框架。这两种框架各有特点:Django 提供一个全面的、高度集成的 Web 开发体验,而 Flask 则更加轻量级和灵活。原创 2024-05-02 12:00:03 · 1047 阅读 · 5 评论