前言
现在距离研究生开学还有一个月的时间,回顾保研后的这大半年,自己先是在深度学习这个领域打基础,从看吴恩达的机器学习再到花书以及西瓜书。之后确定了Human Pose的研究方向,开始关注这一领域,看了不少论文,也借着毕设自己动手写了一个项目,但感觉自己的知识一直没有形成体系。因此想利用这一个月的时间,将2D与3D的比较经典的论文、方法再总结回顾一下,构建出自己的Human Pose知识树。
回头再看,终于明白了为什么CPM和Hourglass这两个工作有着里程碑一样的地位,这两篇工作几乎把大方向给定好了,后续的大部分工作都是对他们的各种改进。
这篇review借鉴了许多博文,主要有以下:
3D Pose Estimation关键点检测的算法整理
2020 Pose Estimation人体骨骼关键点检测综述笔记
重新思考人体姿态估计
人体姿态估计(Human Pose Estimation)经典方法整理
A 2019 guide to human pose estimation
目录
1 Human Pose Estimation
2 2D Single-Person Pose Estimation
2.1 Dataset
2.2 Ground Truth
2.3 DeepPose: Human Pose Estimation via Deep Neural Networks, CVPR2014
2.4 Efficient Object Localization Using Convolutional Networks, CVPR2015
2.5 Convolutional Pose Machines, CVPR2016
2.6 Stacked Hourglass Networks for Human Pose Estimation, ECCV2016
2.7 Multi-Context Attention for Human Pose Estimation, CVPR2017
2.8 Human Pose Estimation with Spatial Contextual Information, Arxiv2019
2.9 Cascade Feature Aggregation for Human Pose Estimation, Arxiv2019
2.10 HRNet & Higher HRNet, CVPR2019&CVPR2020
2.11 Toward fast and accurate human pose estimation via soft-gated skip connections, Arxiv2020
2.12 2D Single-Person Pose Estimation小结
3 2D Top-Down Multi-Person Pose Estimation
4 2D Bottom-Up Multi-Person Pose Estimation
5 3D Human Pose Estimation from Image
6 3D Human Pose Estimation from Video
1 Human Pose Estimation
人体姿态估计的定义就是在图像或视频中定位人体各个关节点的位置,可以分为2D以及3D两种情况。人体姿态估计是一种基础性的计算机视觉技术,可以应用于动作识别、机器人训练,增强现实等方面。人体可能存在各种姿态、有些关节