OpenCV自适应阈值二值化处理

该博客介绍了在图像处理中使用OpenCV库进行二值化处理的步骤,特别是应用了自适应阈值技术,包括ADAPTIVE_THRESH_MEAN_C和ADAPTIVE_THRESH_GAUSSIAN_C两种方法,以保留图像细节。代码示例展示了如何读取图片,转换为灰度图,并应用自适应阈值转换,最后展示并保存处理后的图像。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在图像处理的过程中,第一步需要二值化处理,尽可能多的保存图像的细节

import cv2 as cv

img=cv.imread("D:/wyx.jpg")
img_Gray=cv.cvtColor(img,cv.COLOR_BGR2GRAY)

athdMEAM=cv.adaptiveThreshold(img_Gray,255,cv.ADAPTIVE_THRESH_MEAN_C,cv.THRESH_BINARY,5,3)
athGAUS=cv.adaptiveThreshold(img_Gray,255,cv.ADAPTIVE_THRESH_GAUSSIAN_C,cv.THRESH_BINARY,5,3)

cv.imshow("wyx",img)
cv.imshow("MEAN_C",athdMEAM)
cv.imshow("GAUSSIAN_C",athGAUS)

cv.imwrite("D:/MEAN_C.jpg",athdMEAM)
cv.imwrite("D:/GAUSSIAN_C.jpg",athGAUS)

cv.waitKey()
cv.destroyAllWindows()

代码运行的结果如图所示

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值