13 网格路径

从一个2×2方阵的左上角出发,只允许向右或向下移动,则恰好有6条通往右下角的路径。
在这里插入图片描述
求在20×20的方阵,这样的路径有多少条?

思路:这个可以通过画图分析,如果等于边的时候只需要一步,如果等于终点的斜对角只需要两步,其他的要递归调用。这个结果虽然是对的,但需要运行好长时间。

方法一:坐标法,计算每个坐标经过的路径。

public class LatticePaths_13 {

	public static long LatticePaths(int right,int down,int num) {
		if(right == num || down == num) {
			return 1;
		}
		else if(right == num-1 && down == num-1) {
			return 2;
		}
		else{
			return LatticePaths(right+1,down,num) + LatticePaths(right,down+1,num);
		}
	}
	
	public static void main(String[] args) {
		System.out.println(LatticePaths(0,0,20));
	}
  1. line7-9,这个 else if() 可以省略,仅仅用于减少迭代的次数

方法二:计数相加法,每个点的计数就是它的两个相邻坐标的计数和

public static long LatticePaths2(int n) {
	long[][] num1 = new long[n+1][n+1];
	long ans = 0;
	
	for(int i=0;i<=n;i++) {
		num1[i][0]=1;
		num1[0][i]=1;
	}
	for(int i=1;i<=n;i++) {
		for(int j=1;j<=n;j++) {
			num1[i][j] = num1[i-1][j] + num1[i][j-1];
		}
	}
	return num1[n][n];
	
	}
<think>我们正在讨论网格路径规划算法及实现。根据引用内容,我们可以了解到几种不同的算法:1.引用[1]提到在3D网格地图上规划路径,通常使用搜索算法(如A*)来寻找从起点到终点的路径,并提到路径优化和动态环境更新。2.引用[2]介绍了FieldD*算法,它是D*Lite算法的改进,通过线性插值生成平滑路径,解决了传统栅格路径规划中路径方向变化受限的问题。3.引用[3]提到使用遗传算法解决网格路径规划问题,这是一种基于种群的优化算法。用户的问题是关于网格路径规划算法及实现,因此我们将介绍几种常见的网格路径规划算法,并讨论它们的实现思路。常见的网格路径规划算法包括:1.A*算法:一种启发式搜索算法,结合了Dijkstra算法和贪婪最佳优先搜索的优点。2.D*系列算法(如D*Lite):适用于动态环境的增量式搜索算法。3.FieldD*:生成平滑路径的改进算法。4.遗传算法:一种基于生物进化原理的优化算法,适用于路径规划问题。下面我们将分别介绍这些算法,并给出简单的实现思路(以伪代码或描述性代码为主)。由于用户可能对实现感兴趣,我们会尽量提供可实现的步骤。注意:由于引用中提到了Matlab实现,但用户没有指定语言,我们将以通用伪代码描述,并在适当的地方提示Matlab实现的特点。由于要求使用中文回答,并且数学表达式使用$...$,独立公式使用$$...$$,我们将按照要求进行。</think>### 网格路径规划算法及实现方法 网格路径规划是在离散网格空间中寻找从起点到终点的最优路径的技术,广泛应用于机器人导航、游戏AI和无人机路径规划等领域。以下是核心算法分类及实现要点: #### 一、经典搜索算法 1. **A*算法**(启发式搜索) - 代价函数:$f(n) = g(n) + h(n)$ - $g(n)$:起点到当前节点实际代价 - $h(n)$:当前节点到终点的启发式估计(常用曼哈顿距离或欧氏距离) - 实现伪代码: ```python open_set = 优先队列(起点) while open_set非空: 当前节点 = open_set.pop() if 当前节点==终点: 重构路径并返回 for 相邻节点 in 当前节点邻居: 新代价 = g(当前节点) + 移动代价 if 新代价 < g(相邻节点): 更新相邻节点代价 设置父节点 将相邻节点加入open_set ``` 2. **Dijkstra算法** - 无启发式的广度优先搜索 - 保证找到最短路径但效率较低 - 时间复杂度:$O(|V|^2)$ #### 二、增量式算法(动态环境) 1. **D* Lite算法** - 适用于环境动态变化的场景 - 核心思想:反向搜索 + 增量更新 - 关键步骤: $$rhs(s) = \min_{s' \in Succ(s)}(c(s,s') + g(s'))$$ 当$g(s) \neq rhs(s)$时标记节点为不一致 2. **Field D*算法**[^2] - D* Lite的改进版本 - 通过线性插值生成平滑路径 - 允许路径方向任意角度变化(突破$\pi/4$限制) - 路径质量对比: ``` 传统D*:路径拐角为直角 ┌─┐ │ │ └─┘ Field D*:平滑路径 ╭──╮ ╰──╯ ``` #### 三、智能优化算法 1. **遗传算法**[^3] - 流程框架: ```mermaid graph TD A[初始化种群] --> B[计算适应度] B --> C{满足终止条件?} C -->|是| D[输出最优路径] C -->|否| E[选择父代] E --> F[交叉操作] F --> G[变异操作] G --> B ``` - 关键操作: - 染色体编码:路径节点序列 - 适应度函数:$fitness = \frac{1}{\text{路径长度} + \text{碰撞惩罚}}$ - 变异策略:随机替换路径节点 #### 四、实现要点(Matlab示例) ```matlab % A*算法核心实现 function path = AStar(grid, start, goal) [rows,cols] = size(grid); openSet = containers.Map('KeyType','char','ValueType','any'); closedSet = false(rows,cols); % 初始化起点 startNode = struct('pos',start, 'g',0, 'h',heuristic(start,goal)); openSet(mat2str(start)) = startNode; while ~isempty(openSet) % 获取最小f值节点 current = getMinFNode(openSet); % 到达终点 if isequal(current.pos, goal) path = reconstructPath(current); return; end % 移出openSet并加入closedSet remove(openSet, mat2str(current.pos)); closedSet(current.pos(1),current.pos(2)) = true; % 遍历邻居 neighbors = getNeighbors(current.pos, grid); for i = 1:size(neighbors,1) neighborPos = neighbors(i,:); % 跳过障碍物和已访问节点 if grid(neighborPos(1),neighborPos(2)) == 0 || closedSet(neighborPos(1),neighborPos(2)) continue; end % 计算新代价 tentative_g = current.g + norm(current.pos - neighborPos); % 更新节点信息 if ~isKey(openSet, mat2str(neighborPos)) || tentative_g < openSet(mat2str(neighborPos)).g neighborNode = struct('pos',neighborPos, 'g',tentative_g, ... 'h',heuristic(neighborPos,goal), 'parent',current); openSet(mat2str(neighborPos)) = neighborNode; end end end path = []; % 无解 end ``` #### 五、算法选择指南 | 算法类型 | 适用场景 | 优点 | 局限性 | |----------------|--------------------------|-----------------------|----------------------| | A*算法 | 静态环境最短路径 | 最优解保证,效率高 | 动态环境需重新计算 | | D* Lite | 部分已知动态环境 | 增量更新效率高 | 实现复杂度高 | | Field D* | 需要平滑路径的导航任务 | 路径自然,转角平滑 | 计算开销较大 | | 遗传算法 | 复杂约束的多目标优化 | 全局搜索能力强 | 参数调优困难 | 实际应用中常采用**混合策略**: 1. 静态环境:A* + 路径平滑后处理 2. 动态环境:Field D* + 实时障碍物更新 3. 复杂场景:遗传算法生成初始路径 + 局部A*优化 > **路径优化示例**: > 原始网格路径:$P = \{(x_0,y_0),(x_1,y_1),\dots,(x_n,y_n)\}$ > 平滑后路径:$P' = \{(x_0,y_0), \text{Bezier}(t), (x_n,y_n)\}$ > 其中贝塞尔曲线控制点由路径拐点确定[^1]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值