数学建模算法学习——各类模型算法汇总

本文全面介绍了各类经典算法,包括线性规划、动态规划、整数规划、排队论、层次分析法、多属性决策、主成分分析、方差分析、回归分析、微分方程建模、马氏链模型、时间序列模型、模糊数学模型、灰色系统理论、聚类分析、存贮论、现代优化算法、神经网络模型、粒子群优化算法以及图论算法,涵盖了数据分析、优化问题解决和决策支持等多个领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

相关模型解决的问题
数据分析类算法一览
100个经典动态规划方程

优化问题

  • 线性规划
  1. 简介:线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab 中规定线性规划的标准形式为
    线性规划
    其中 c 和 x 为 n 维列向量, A 、 Aeq 为适当维数的矩阵, b 、 beq 为适当维数的列向量。
  2. 代码实现

MATLAB实现:MATLAB中求解线性规划的命令为:
[ x,fval ]=linprog(f,A,b)
[ x,fval ]=linprog(f,A,b,Aeq,beq)
[ x,fval ]=linprog(f,A,b,Aeq,beq,lb,ub)
其中:返回的x为决策向量的取值; 返回的fval是目标函数的最大值;f为价值向量;A和b对应的是线性不等式约束;Aeq和beq对应的是线性等式约束;lb和ub分别对应的是决策向量的下界向量和上界向量。
eg1:线性规划
(1)化为Matlab标准型,即线性规划
(2)求解的Matlab程序如下:

f=[-2,-3,5]'
A=[-2,5,-1;1,3,1];  b=[-10;12];
Aeq=[1,1,1];    beq=7;
[x,fval]=linprog(f,A,b,Aeq,beq,zeros(3,1));
x
fval=-fval

这里的zeros(3,1)是为了产生3行1列的全0矩阵,对应着x1,x2,x3均大于等于0的约束条件。
eg2:可以转化为线性规划的问题
线性规划
线性规划
可进一步把模型改写为:线性规划
参考链接
应用:运输问题(产销平衡)、指派问题(匈牙利算法)、对偶理论与灵敏度分析、投资的收益和风险

  • 非线性规划
  1. 简介:如果线性规划的最优解存在,其最优解只能在其可行域的边界上达到(特别是可行域的顶点上达到);而非线性规划的最优解(如果最优解存在)则可能在其可行域的任意一点达到。
    非线性规划
    其中f(x)是标量函数, Beq,Aeq,B,A 是相应维数的矩阵和向量, Ceq(x),C(x) 是非线性向量函数。
  2. 代码实现

MATLAB代码实现:
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
1.fun为目标函数
2.x0为初始值
3.A是不等式约束AX<=b的系数矩阵
4.b是不等式约束AX<=b的常数项
5.Aeq是等式约束AeqX=beq的系数矩阵,
6.beq是等式约束AeqX=beq的常数项,
7.lb是X的下限,
8.ub是X的上限,
9.nonlcon为非线性不等式约束
10.option为设置fmincon的参数
eg:非线性规划
形如上述这样的就是非线性规划:

function f=fun1(x)
f=x(1)^2+x(2)^2+8;

function [g,h]=fun2(x)
g=-x(1)^2+x(2);
h=-x(1)-x(2)^2+2;%约束等式

options=optimset;
[x,y]=fmincon('fun1',rand(2,1),[],[],[],[],zeros(2,1),[],'fun2',options)

x =

    1.0000
    1.0000
y =

   10.0000

参考链接

  • 整数规划
  1. 简介:规划中的变量(部分或全部)限制为整数时,称为整数规划。若在线性规划模型中,变量限制为整数,则称为整数线性规划。目前所流行的求解整数规划的方法,往往只适用于整数线性规划。目前还没有一种方法能有效地求解一切整数规划。如不加特殊说明,一般指整数线性规划。对于整数线性规划模型大致可分为两类:
    1 变量全限制为整数时,称纯(完全)整数规划。
    2 变量部分限制为整数的,称混合整数规划。
  2. 代码实现

参考链接
马尔可夫过程

  • 动态规划
  1. 简介:动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decisionprocess)最优化的数学方法。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。
  2. 代码实现

参考链接
具体问题具体分析

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JackHCC

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值