PAT 1046 Shortest Distance

博客围绕计算高速公路出口间最短距离的任务展开,给出输入规格,包含出口数量、各出口间距离及查询的出口对;也给出输出规格,需输出每对出口间的最短距离,并提供了示例输入输出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The task is really simple: given N exits on a highway which forms a simple cycle, you are supposed to tell the shortest distance between any pair of exits.

Input Specification:

Each input file contains one test case. For each case, the first line contains an integer N (in [3, 105]), followed by N integer distances D1 D2 … DN, where Di is the distance between the i-th and the (i+1)-st exits, and DN is between the N-th and the 1st exits. All the numbers in a line are separated by a space. The second line gives a positive integer M (<=104), with M lines follow, each contains a pair of exit numbers, provided that the exits are numbered from 1 to N. It is guaranteed that the total round trip distance is no more than 107.

Output Specification:

For each test case, print your results in M lines, each contains the shortest distance between the corresponding given pair of exits.

Sample Input:

5 1 2 4 14 9
3
1 3
2 5
4 1

Sample Output:

3
10
7
#include <iostream>
#include <algorithm>
using namespace std;

const int maxN = 100005;
int dis[maxN]; //dis[i] 代表着 1号出口到第 i 个出口的 下一个出口的距离 (顺时针)

int main(){
    int n, distance; //n出口个数, distance是i号与i+1号出口之间的距离(用一个数组来保存会更加清晰,但这样可以省去开辟一块数组的内存)
    cin >> n;
    int sum = 0; //一圈的总距离
    for(int i = 1; i <= n; i++){
        cin >> distance;
        sum += distance; //累加sum
        dis[i] = sum; //没累加一次 就是1号出口 到 第i个出口的 下一个出口的距离
    }
    
    int m, left, right;
    cin >> m;
    for(int i = 0; i < m; i++){
        cin >> left >> right;
        if(left > right) swap(left, right); //要保证left 小于 right
        //dis[right - 1]那就是 1号到right号的距离 dis[left - 1]同理
        //那么left 到 right 之间的距离 不就是 1到right 减去 1到left的距离嘛
        //当然这是只考虑了顺时针的情况
        int temp = dis[right - 1] - dis[left - 1];
        cout << min(temp, sum - temp) << endl; //那么逆时针好说啊,直接sum - temp 总距离减去顺时针之间的距离 那不就是逆时针之间的距离嘛。

		/*
			另外,这道题是输入一行输出一行,并不是像之前在最后把所有结果一并输出
			pat应该是只要每输出一行 保证这一行的格式结果正确就是对的
			类似将结果输出的 一个文档之中 你可以输入过程中 一行一行读进去
			也可以输入完毕后 在最后一并将结果 读进去~~~ 个人理解,或许有错误吧QAQ
		*/
    }
    return 0;
}
Every year the cows hold an event featuring a peculiar version of hopscotch that involves carefully jumping from rock to rock in a river. The excitement takes place on a long, straight river with a rock at the start and another rock at the end, L units away from the start (1 ≤ L ≤ 1,000,000,000). Along the river between the starting and ending rocks, N (0 ≤ N ≤ 50,000) more rocks appear, each at an integral distance Di from the start (0 < Di < L). To play the game, each cow in turn starts at the starting rock and tries to reach the finish at the ending rock, jumping only from rock to rock. Of course, less agile cows never make it to the final rock, ending up instead in the river. Farmer John is proud of his cows and watches this event each year. But as time goes by, he tires of watching the timid cows of the other farmers limp across the short distances between rocks placed too closely together. He plans to remove several rocks in order to increase the shortest distance a cow will have to jump to reach the end. He knows he cannot remove the starting and ending rocks, but he calculates that he has enough resources to remove up to M rocks (0 ≤ M ≤ N). FJ wants to know exactly how much he can increase the shortest distance *before* he starts removing the rocks. Help Farmer John determine the greatest possible shortest distance a cow has to jump after removing the optimal set of M rocks. Input Line 1: Three space-separated integers: L, N, and M Lines 2..N+1: Each line contains a single integer indicating how far some rock is away from the starting rock. No two rocks share the same position. Output Line 1: A single integer that is the maximum of the shortest distance a cow has to jump after removing M rocks Sample Inputcopy Outputcopy 25 5 2 2 14 11 21 17 4 Hint Before removing any rocks, the shortest jump was a jump of 2 from 0 (the start) to 2. After removing the rocks at 2 and 14, the shortest required jump is a jump of 4 (from 17 to 21 or from 21 to 25).
07-24
To determine the greatest possible shortest distance a cow has to jump after removing the optimal set of M rocks, we can follow these steps: 1. Read the input values for L, N, and M. 2. Read the distances of the N rocks from the starting rock and store them in a list. 3. Sort the list of distances in ascending order. 4. Calculate the initial shortest jump as the distance from the starting rock to the first rock. 5. Initialize a variable max_jump to store the maximum shortest jump. 6. Iterate over each possible combination of removing M rocks from the list of distances. We can use a nested loop to generate all combinations. - For each combination, calculate the shortest jump after removing the selected rocks. - Update max_jump if the current shortest jump is greater than max_jump. 7. Print the value of max_jump as the maximum shortest distance a cow has to jump after removing M rocks. Here's an example implementation in Python: ```python from itertools import combinations L, N, M = map(int, input().split()) rocks = [] for _ in range(N): rocks.append(int(input())) rocks.sort() initial_jump = rocks[0] max_jump = 0 for remove_rocks in combinations(range(1, N + 1), M): jumps = [rocks[remove_rocks[i]] - rocks[remove_rocks[i - 1] - 1] for i in range(1, M)] jumps.append(L - rocks[remove_rocks[M - 1] - 1]) shortest_jump = min(jumps) max_jump = max(max_jump, shortest_jump) print(max_jump) ``` In the example input provided, the output would be `4`, which represents the maximum shortest distance a cow has to jump after removing 2 rocks. Note: This solution uses brute force to iterate over all possible combinations of removing M rocks. The time complexity is O(N choose M), which can be large for large values of N and M.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值