如何显示标注的纯黑mask图

这篇博客主要介绍了如何在计算机视觉中显示二分类和多分类的mask图像。对于二分类mask,只需将像素值1转换为255以显示白色。而对于多分类mask,需要通过伪彩色映射为每个类别分配不同颜色。文中提供了相应的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

通常情况下,使用标注软件标注的标签图看起来都是纯黑的,因为mask图为单通道的灰度图,而灰度图一般要像素值大于128后,才会逐渐显白,255为白色。而标注的时候,不同类别的像素值是从1,2,3...这样的顺序,所以看起来是纯黑的。

一、二分类mask显示

若只是二分类,原本像素值就只有0和1的区分,那只需要将像素1转换为255即可显示白色,可使用inRange函数

	cv::Mat img = cv::imread("C:/Users/WA.png",0);
	cv::Mat img_i;
	cv::inRange(img, 1, 1, img_i); // 上界和下界都为1,即只匹配值为1的像素;将值为1的像素设置为白色(255),其余像素为黑色(保持不变)
	cv::imshow("img", img);
	cv::imshow("img_i", img_i);

在这里插入图片描述

二、多分类mask显示

若存在多个类别,就需要给每个类别单独定义一种颜色。(彩色图是三通道的,mask图是单通道,所以这种操作也称为伪彩色映射)

代码如下(示例):

import cv2
import numpy as np
from PIL import Image
import glob

color_map = np.zeros((256 * 3)).astype('uint8')
color_map[:3 * 13] = np.array([[0, 0, 0],   # 0像素还是得为0
                                  [41, 43, 204],  # 原像素值为1的
                                  [6, 128, 245],  # 原像素值为2的
                                  [36, 159, 67],
                                  [41, 43, 204],
                                  [190, 104, 145],
                                  [75, 86, 135],
                                  [195,120,219],
                                  [127, 127, 127],
                                  [18, 189, 187],
                                  [207, 190, 72],
                                  [233, 199, 178],
                                  [118, 187, 248]
                                  ],dtype='uint8').flatten()

def labeltocolor(mask):
    im=Image.fromarray(mask)
    im.putpalette(color_map)
    im=np.array(im.convert('RGB'))
    # cv2.imshow("1",im)
    # cv2.waitKey()
    # cv2.destroyAllWindows()
    return im


# 遍历文件夹中的所有图片
image_paths = glob.glob('C:/Users/Desktop/train01/01/mask/*.png')
idx = 0  # 当前图片索引
num_images = len(image_paths)  # 图片数量

for image_path in image_paths:
    # 加载单通道遮罩图(假设为灰度图)
    mask = cv2.imread(image_paths[idx], cv2.IMREAD_GRAYSCALE)

    # 将遮罩图像应用伪彩色映射
    mask_color = labeltocolor(mask)


    cv2.imshow('Result', mask_color)
    key = cv2.waitKey(0) 

    if key == ord('q'):  
        break
    elif key == ord('n'):  
        idx = (idx + 1) % num_images

cv2.destroyAllWindows()
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

想要躺平的一枚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值