DeepLab系列论文(下)

DeepLab V3

DeepLab V3在v1和v2的基础上做了以下几点改进:
(1)改进ASPP模块:加入了BN层,同时尝试串行和并行两种方式
(2)去除了CRF
(3)将图像级特征融合到ASPP模块

注:当应用一个速率非常大的 3 × 3 空洞卷积时,由于图像边界效应,它无法捕获远程信息,会退化为 1 × 1 卷积,因此建议合并图像级特征 进入 ASPP 模块。

多尺度预测常用方法

在这里插入图片描述

常见多尺度预测
(1)图(a):图像金字塔(思想:多尺度输入),将图片的不同分辨率输入同一个网络
(2)图(b):编码解码器结构
(3)图(c):原始网络带有空洞卷积
(4)图(d):空间金字塔池化

调整后的ASPP模块

在这里插入图片描述

改进的ASPP模块
由图可见,调整后的ASPP模块有以下几个改变:
(1)由于rate过大,会退化成1 × 1 卷积,因此取消了V2中rate=24的卷积,使用了1 × 1 卷积
(2)融入了图像级特征
(3)文中提到在空洞卷积中使用了BN层

ASPP的代码实现(pytorch)<

### Deeplab 论文 PDF 下载方法 对于希望获取 DeepLab 系列论文的用户,以下是具体的方法: #### 方法一:通过学术搜索引擎下载 可以利用 Google Scholar 或其他学术搜索引擎输入关键词 “DeepLab Chen”,找到对应的版本(如 DeepLab v1, v2, v3+, etc.)。每篇论文通常会提供多个下载链接,包括官方出版物和作者个人主页上的预印本。 - **Google Scholar**: 输入 `Rethinking Atrous Convolution for Semantic Image Segmentation` 即可定位到 DeepLab v3论文[^2]。 #### 方法二:访问作者主页或项目仓库 许多研究者会在其个人主页上分享论文的最新版。例如,DeepLab 的主要贡献者 Liang-Chieh Chen 曾在其所属机构页面上传过相关文档。此外,GitHub 和 BitBucket 上也有部分实现代码附带论文说明文件[^1]。 #### 方法三:直接使用DOI编号检索 如果已知某篇文章的具体 DOI 编号,则可以通过 Crossref (https://crossref.org/) 查询并合法获取全文。比如 DeepLab v3+ 的正式发表记录可通过如下方式查得: ```plaintext DOI: 10.1109/CVPR.2018.00389 ``` --- ### 提供的部分资源汇总 | 版本 | 链接 | |------------|------------------------------------------------------------------------------------------| | DeepLab v1 | [PDF](http://arxiv.org/pdf/1406.2216) | | DeepLab v2 | 查阅引用中的博客总结[^5], 并结合原作地址 | | DeepLab v3 | TensorFlow 官方解读[^4]; ArXiv 开源版本 | | DeepLab v3+| GitHub 实现详情页下的 References 列表 | 注意上述表格仅为指引作用,请依据实际需求筛选适合的内容形式。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值